295 research outputs found

    Environmental reduplicative paramnesia in a case of atypical Alzheimer's disease.

    Get PDF
    A 79-year-old patient with neuropathologically confirmed Alzheimer's disease (AD) presented with a selective environmental reduplicative paramnesia (RP), the belief that one or more environments exist simultaneously in two or more physical locations. Clinical presentation and neuropathological examination revealed an atypical form of AD. High neurofibrillary tangle densities were observed in the frontal and temporal association cortex, whereas the parietal and entorhinal cortex, as well as the hippocampus, were nearly spared. These findings are compared to those reported in frontal and frontotemporal variants of AD and discussed in the light of current anatomoclinical models for environmental RP

    New insights into the classification and nomenclature of cortical GABAergic interneurons.

    Get PDF
    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus

    On the relation between action selection and movement control in 5- to 9-month-old infants

    Get PDF
    Although 5-month-old infants select action modes that are adaptive to the size of the object (i.e., one- or two-handed reaching), it has largely remained unclear whether infants of this age control the ensuing movement to the size of the object (i.e., scaling of the aperture between hands). We examined 5-, 7-, and 9-month-olds’ reaching behaviors to gain more insight into the developmental changes occurring in the visual guidance of action mode selection and movement control, and the relationship between these processes. Infants were presented with a small set of objects (i.e., 2, 3, 7, and 8 cm) and a large set of objects (i.e., 6, 9, 12, and 15 cm). For the first set of objects, it was found that the infants more often performed two-handed reaches for the larger objects based on visual information alone (i.e., before making contact with the object), thus showing adaptive action mode selection relative to object size. Kinematical analyses of the two-handed reaches for the second set of objects revealed that inter-trial variance in aperture between the hands decreased with the approach toward the object, indicating that infants’ reaching is constrained by the object. Subsequent analysis showed that between hand aperture scaled to object size, indicating that visual control of the movement is adjusted to object size in infants as young as 5 months. Individual analyses indicated that the two processes were not dependent and followed distinct developmental trajectories. That is, adaptive selection of an action mode was not a prerequisite for appropriate aperture scaling, and vice versa. These findings are consistent with the idea of two separate and independent visual systems (Milner and Goodale in Neuropsychologia 46:774–785, 2008) during early infancy

    The impact of patient-reported frailty on cardiovascular outcomes in elderly patients after non-ST-acute coronary syndrome

    Get PDF
    Background: As life expectancy increases, the population of older individuals with coronary artery disease and frailty is growing. We aimed to assess the impact of patient-reported frailty on the treatment and prognosis of elderly early survivors of non-ST-elevation acute coronary syndrome (NSTE-ACS). Methods: Frailty data were obtained from two prospective trials, POPular Age and the POPular Age Registry, which both assessed elderly NSTE-ACS patients. Frailty was assessed one month after admission with the Groningen Frailty Indicator (GFI) and was defined as a GFI-score of 4 or higher. In these early survivors of NSTE-ACS, we assessed differences in treatment and 1-year outcomes between frail and non-frail patients, considering major adverse cardiovascular events (MACE, including cardiovascular mortality, myocardial infarction, and stroke) and major bleeding. Results: The total study population consisted of 2192 NSTE-ACS patients, aged ≥70 years. The GFI-score was available in 1320 patients (79 ± 5 years, 37% women), of whom 712 (54%) were considered frail. Frail patients were at higher risk for MACE than non-frail patients (9.7% vs. 5.1%, adjusted hazard ratio [HR] 1.57, 95% confidence interval [CI] 1.01–2.43, p = 0.04), but not for major bleeding (3.7% vs. 2.8%, adjusted HR 1.23, 95% CI 0.65–2.32, p = 0.53). Cubic spline analysis showed a gradual increase of the risk for clinical outcomes with higher GFI-scores. Conclusions: In elderly NSTE-ACS patients who survived 1-month follow-up, patient-reported frailty was independently associated with a higher risk for 1-year MACE, but not with major bleeding. These findings emphasize the importance of frailty screening for risk stratification in elderly NSTE-ACS patients.</p

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Weight Consistency Specifies Regularities of Macaque Cortical Networks

    Get PDF
    To what extent cortical pathways show significant weight differences and whether these differences are consistent across animals (thereby comprising robust connectivity profiles) is an important and unresolved neuroanatomical issue. Here we report a quantitative retrograde tracer analysis in the cynomolgus macaque monkey of the weight consistency of the afferents of cortical areas across brains via calculation of a weight index (fraction of labeled neurons, FLN). Injection in 8 cortical areas (3 occipital plus 5 in the other lobes) revealed a consistent pattern: small subcortical input (1.3% cumulative FLN), high local intrinsic connectivity (80% FLN), high-input form neighboring areas (15% cumulative FLN), and weak long-range corticocortical connectivity (3% cumulative FLN). Corticocortical FLN values of projections to areas V1, V2, and V4 showed heavy-tailed, lognormal distributions spanning 5 orders of magnitude that were consistent, demonstrating significant connectivity profiles. These results indicate that 1) connection weight heterogeneity plays an important role in determining cortical network specificity, 2) high investment in local projections highlights the importance of local processing, and 3) transmission of information across multiple hierarchy levels mainly involves pathways having low FLN values

    The effect of low temperature and low light intensity on nutrient removal from municipal wastewater by purple phototrophic bacteria (PPB)

    Get PDF
    There has been increased interest in alternative wastewater treatment systems to improve nutrient recovery while achieving acceptable TCOD, TN, and TP discharge limits. Purple phototrophic bacteria (PPB) have a high potential for simultaneous nutrient removal and recovery from wastewater. This study evaluated the PPB performance and its growth at different operating conditions with a focus on HRT and light optimization using a continuous-flow membrane photobioreactor (PHB). Furthermore, the effect of low temperature on PPB performance was assessed to evaluate the PPB’s application in cold-climate regions. In order to evaluate PPB performance, TCOD, TN, and TP removal efficiencies and Monod kinetic parameters were analyzed at different HRTs (36, 18, and 9 h), at temperatures of 22°C and 11°C and infrared (IR) light intensities of 50, 3, and 1.4 Wm-2. The results indicated that low temperature had no detrimental impact on PPB’s performance. The photobioreactor (PHB) with cold-enriched PPB has a high potential to treat municipal wastewater with effluent concentrations below target limits (TCOD˂ 50mgL-1, TN˂10 mgL-1, and TP˂1 mgL-1). Monod kinetic parameters Ks, K, Y, and Kd were estimated at 20-29 mgCODL-1, 1.6-1.9 mgCOD(mgVSS.d)-1, 0.47 mgVSS mgCOD-1, and 0.07-0.08 d-1 at temperatures of 11°C-22°C respectively. The results of the steady-state mass balances showed TCOD, TN, and TP recoveries of 80%-86%, which reflected PPB’s substrate and nutrient assimilation. Previous studies utilized high light intensities (˃ 50 Wm-2) to provide PPB with the maximum energy required for its growth. In order to enable the PPB technology as a practical approach in municipal wastewater treatment, light intensity must be optimized. Based on the literature, there is no study on PPB performance at low light intensities using a continuous-flow membrane photobioreactor. The effect of low light intensities of 3, and 1.4 Wm-2 on PPB performance was addressed in this study. The results indicated that PPB at a light intensity as low as 1.4 Wm-2 were able to treat municipal wastewater with effluent concentrations below above-mentioned target limits. Light intensity (1-50 Wm-2) had no detrimental impact on PPB performance and Monod kinetic parameters. This study showed that the optimized light intensity required for municipal wastewater treatment with PPB is significantly lower than previously indicated in the literature. The energy consumptions attributed to PHB’s illumination of 3, and 1.4 Wm-2 were determined to be 1.44, and 0.67 kWh/m3 which is significantly lower than previous studies (˃ 24 kWh/m3)

    Analysis of Area-Specific Expression Patterns of RORbeta, ER81 and Nurr1 mRNAs in Rat Neocortex by Double In Situ Hybridization and Cortical Box Method

    Get PDF
    BACKGROUND: The mammalian neocortex is subdivided into many areas, each of which exhibits distinctive lamina architecture. To investigate such area differences in detail, we chose three genes for comparative analyses, namely, RORbeta, ER81 and Nurr1, mRNAs of which have been reported to be mainly expressed in layers 4, 5 and 6, respectively. To analyze their qualitative and quantitative coexpression profiles in the rat neocortex, we used double in situ hybridization (ISH) histochemistry and cortical box method which we previously developed to integrate the data of different staining and individuals in a standard three-dimensional space. PRINCIPAL FINDINGS: Our new approach resulted in three main observations. First, the three genes showed unique area distribution patterns that are mostly complementary to one another. The patterns revealed by cortical box method matched well with the cytoarchitectonic areas defined by Nissl staining. Second, at single cell level, RORbeta and ER81 mRNAs were coexpressed in a subpopulation of layer 5 neurons, whereas Nurr1 and ER81 mRNAs were not colocalized. Third, principal component analysis showed that the order of hierarchical processing in the cortex correlates well with the expression profiles of these three genes. Based on this analysis, the dysgranular zone (DZ) in the somatosensory area was considered to exhibit a profile of a higher order area, which is consistent with previous proposal. CONCLUSIONS/SIGNIFICANCE: The tight relationship between the expression of the three layer specific genes and functional areas were revealed, demonstrating the usefulness of cortical box method in the study on the cerebral cortex. In particular, it allowed us to perform statistical evaluation and pattern matching, which would become important in interpreting the ever-increasing data of gene expression in the cortex

    Intracranial Aneurysm Classifier Using Phenotypic Factors: An International Pooled Analysis

    Get PDF
    Intracranial aneurysms (IAs) are usually asymptomatic with a low risk of rupture, but consequences of aneurysmal subarachnoid hemorrhage (aSAH) are severe. Identifying IAs at risk of rupture has important clinical and socio-economic consequences. The goal of this study was to assess the effect of patient and IA characteristics on the likelihood of IA being diagnosed incidentally versus ruptured. Patients were recruited at 21 international centers. Seven phenotypic patient characteristics and three IA characteristics were recorded. The analyzed cohort included 7992 patients. Multivariate analysis demonstrated that: (1) IA location is the strongest factor associated with IA rupture status at diagnosis; (2) Risk factor awareness (hypertension, smoking) increases the likelihood of being diagnosed with unruptured IA; (3) Patients with ruptured IAs in high-risk locations tend to be older, and their IAs are smaller; (4) Smokers with ruptured IAs tend to be younger, and their IAs are larger; (5) Female patients with ruptured IAs tend to be older, and their IAs are smaller; (6) IA size and age at rupture correlate. The assessment of associations regarding patient and IA characteristics with IA rupture allows us to refine IA disease models and provide data to develop risk instruments for clinicians to support personalized decision-making
    corecore