653 research outputs found
Evidence for short cooling time in the Io plasma torus
We present empirical evidence for a radiative cooling time for the Io plasma torus that is about a factor of ten less than presently accepted values. We show that brightness fluctuations of the torus in the extreme ultraviolet (EUV) at one ansa are uncorrelated with the brightness at the other ansa displaced in time by five hours, either later or earlier. Because the time for a volume of plasma to move from one ansa to the other is only five hours, the cooling time must be less than this transport time in order to wipe out memory of the temperatures between ansae. Most (âŒ80â85%) of the EUV emission comes from a narrow (presumably ribbonâlike) feature within the torus. The short cooling time we observe is compatible with theoretical estimates if the electron density in the ribbon is âŒ10^4/cm^3. The cooling time for the rest of the torus (which radiates the remaining 15â20% of the power) is presumably consistent with the previously derived 20âhour values. A nearlyâcontinuous heating in both longitude and time is needed to maintain the EUV visibility of the torus ribbonâa requirement not satisfied by presently available theories
Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
The data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-ÎČ plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet
Is current disruption associated with an inverse cascade?
Current disruption (CD) and the related kinetic instabilities in the
near-Earth magnetosphere represent physical mechanisms which can trigger
multi-scale substorm activity including global reorganizations of the
magnetosphere. Lui et al. (2008) proposed a CD scenario in which the kinetic
scale linear modes grow and reach the typical dipolarization scales through an
inverse cascade. The experimental verification of the inverse nonlinear cascade
is based on wavelet analysis. In this paper the Hilbert-Huang transform is used
which is suitable for nonlinear systems and allows to reconstruct the
time-frequency representation of empirical decomposed modes in an adaptive
manner. It was found that, in the Lui et al. (2008) event, the modes evolve
globally from high-frequencies to low-frequencies. However, there are also
local frequency evolution trends oriented towards high-frequencies, indicating
that the underlying processes involve multi-scale physics and non-stationary
fluctuations for which the simple inverse cascade scenario is not correct.Comment: 6 pages, 4 figure
Intermittent turbulence, noisy fluctuations and wavy structures in the Venusian magnetosheath and wake
Recent research has shown that distinct physical regions in the Venusian
induced magnetosphere are recognizable from the variations of strength of the
magnetic field and its wave/fluctuation activity. In this paper the statistical
properties of magnetic fluctuations are investigated in the Venusian
magnetosheath and wake regions. The main goal is to identify the characteristic
scaling features of fluctuations along Venus Express (VEX) trajectory and to
understand the specific circumstances of the occurrence of different types of
scalings. For the latter task we also use the results of measurements from the
previous missions to Venus. Our main result is that the changing character of
physical interactions between the solar wind and the planetary obstacle is
leading to different types of spectral scaling in the near-Venusian space.
Noisy fluctuations are observed in the magnetosheath, wavy structures near the
terminator and in the nightside near-planet wake. Multi-scale turbulence is
observed at the magnetosheath boundary layer and near the quasi-parallel bow
shock. Magnetosheath boundary layer turbulence is associated with an average
magnetic field which is nearly aligned with the Sun-Venus line. Noisy magnetic
fluctuations are well described with the Gaussian statistics. Both
magnetosheath boundary layer and near shock turbulence statistics exhibit
non-Gaussian features and intermittency over small spatio-temporal scales. The
occurrence of turbulence near magnetosheath boundaries can be responsible for
the local heating of plasma observed by previous missions
Magnetic Fluctuations and Turbulence in the Venus Magnetosheath and Wake
Recent research has shown that distinct physical regions in the Venusian
induced magnetosphere are recognizable from the variations of strength and of
wave/fluctuation activity of the magnetic field. In this paper the statistical
properties of magnetic fluctuations are investigated in the Venusian
magnetosheath, terminator, and wake regions. The latter two regions were not
visited by previous missions. We found 1/f fluctuations in the magnetosheath,
large-scale structures near the terminator and more developed turbulence
further downstream in the wake. Location independent short-tailed non-Gaussian
statistics was observed.Comment: 16 pages, 4 figure
Wavelet analysis of magnetic turbulence in the Earth's plasma sheet
Recent studies provide evidence for the multi-scale nature of magnetic
turbulence in the plasma sheet. Wavelet methods represent modern time series
analysis techniques suitable for the description of statistical characteristics
of multi-scale turbulence. Cluster FGM (fluxgate magnetometer) magnetic field
high-resolution (~67 Hz) measurements are studied during an interval in which
the spacecraft are in the plasma sheet. As Cluster passes through different
plasma regions, physical processes exhibit non-steady properties on
magnetohydrodynamic (MHD) and small, possibly kinetic scales. As a consequence,
the implementation of wavelet-based techniques becomes complicated due to the
statistically transitory properties of magnetic fluctuations and finite size
effects. Using a supervised multi-scale technique which allows existence test
of moments, the robustness of higher-order statistics is investigated. On this
basis the properties of magnetic turbulence are investigated for changing
thickness of the plasma sheet.Comment: 17 pages, 5 figure
Alfvén waves in the near-PSBL lobe: Cluster observations
Electromagnetic low-frequency waves in the magnetotail lobe close to the PSBL (Plasma Sheet Boundary Layer) are studied using the Cluster spacecraft. The lobe waves show Alfvénic properties and transport their wave energy (Poynting flux) on average toward the Earth along magnetic field lines. Most of the wave events are rich with oxygen (O+) ion plasma. The rich O+ plasma can serve to enhance the magnetic field fluctuations, resulting in a greater likelihood of observation, but it does not appear to be necessary for the generation of the waves. Taking into account the fact that all events are associated with auroral electrojet enhancements, the source of the lobe waves might be a substorm-associated instability, i.e. some instability near the reconnection site, or an ion beam-related instability in the PSBL
Solar wind interaction with a comet: evolution, variability, and implication
Once a cometary plasma cloud has been created through ionisation of the
cometary neutrals, it presents an obstacle to the solar wind and the magnetic
field within it. The acceleration and incorporation of the cometary plasma by
the solar wind is a complex process that shapes the cometary plasma environment
and is responsible for the creation of boundaries such as a bow shock and
diamagnetic cavity boundary. It also gives rise to waves and electric fields
which in turn contribute to the acceleration of the plasma. This chapter aims
to provide an overview of how the solar wind is modified by the presence of the
cometary plasma, and how the cometary plasma is incorporated into the solar
wind. We will also discuss models and techniques widely used in the
investigation of the plasma environment in the context of recent findings by
Rosetta. In particular, this chapter highlights the richness of the processes
and regions within this environment and how processes on small scales can shape
boundaries on large scales. It has been fifteen years since the last book on
Comets was published and since then we have made great advances in the field of
cometary research. But many open questions remain which are listed and
discussed with particular emphasis on how to advance the field of cometary
plasma science through future space missions.Comment: Chapter 17 as part of book: Comets II
Magnetic turbulence in the plasma sheet
Small-scale magnetic turbulence observed by the Cluster spacecraft in the
plasma sheet is investigated by means of a wavelet estimator suitable for
detecting distinct scaling characteristics even in noisy measurements. The
spectral estimators used for this purpose are affected by a frequency dependent
bias. The variances of the wavelet coefficients, however, match the power-law
shaped spectra, which makes the wavelet estimator essentially unbiased. These
scaling characteristics of the magnetic field data appear to be essentially
non-steady and intermittent. The scaling properties of bursty bulk flow (BBF)
and non-BBF associated magnetic fluctuations are analysed with the aim of
understanding processes of energy transfer between scales. Small-scale ( s) magnetic fluctuations having the same scaling index as the large-scale ( s) magnetic fluctuations occur during
BBF-associated periods. During non-BBF associated periods the energy transfer
to small scales is absent, and the large-scale scaling index
is closer to Kraichnan or Iroshnikov-Kraichnan scalings. The anisotropy
characteristics of magnetic fluctuations show both scale-dependent and
scale-independent behavior. The former can be partly explained in terms of the
Goldreich-Sridhar model of MHD turbulence, which leads to the picture of
Alfv\'{e}nic turbulence parallel and of eddy turbulence perpendicular to the
mean magnetic field direction. Nonetheless, other physical mechanisms, such as
transverse magnetic structures, velocity shears, or boundary effects can
contribute to the anisotropy characteristics of plasma sheet turbulence. The
scale-independent features are related to anisotropy characteristics which
occur during a period of magnetic reconnection and fast tailward flow.Comment: 32 pages, 12 figure
Editorial : Sources and propagation of ultra-low frequency waves in planetary magnetospheres
Non peer reviewe
- âŠ