71 research outputs found

    ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons

    Get PDF
    Proneurotrophins and mature neurotrophins activate different signaling pathways with distinct effects on their target cells: proneurotrophins can induce apoptotic signaling via p75NTR, whereas mature neurotrophins activate Trk receptors to influence survival and differentiation. Here, we demonstrate that the PTEN (phosphatase and tensin homolog deleted on chromosome 10) phosphatase represents a novel switch between the survival and apoptotic signaling pathways in rat CNS neurons. Simultaneous activation of p75 NTR by proNGF and TrkB signaling by BDNF elicited apoptosis despite TrkB phosphorylation. Apoptosis induced by p75NTR required suppression of TrkB-induced phosphoinositide-3 kinase signaling, mediated by induction of PTEN, for apoptosis to proceed. Inhibition of PTEN restored the ability of BDNF to phosphorylate Akt and protect cultured basal forebrain neurons from proNGF-induced death. In vivo, inhibition or knockdown of PTEN after pilocarpine-induced seizures protected CNS neurons from p75 NTR-mediated death, demonstrating that PTEN is a crucial factor mediating the balance between p75NTR-induced apoptotic signaling and Trk-mediated survival signaling in brain neurons.Fil: Song, Wenyu. Rutgers University. School of Engineering. Chemical and Biochemical Engineering Department; Estados UnidosFil: Lapid de Volosin, Marta Edith. Rutgers University. School of Engineering. Chemical and Biochemical Engineering Department; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Cragnolini, Andrea Beatriz. Rutgers University. School of Engineering. Chemical and Biochemical Engineering Department; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Hempstead, Barbara L.. Cornell University; Estados UnidosFil: Friedman, Wilma J.. Rutgers University. School of Engineering. Chemical and Biochemical Engineering Department; Estados Unido

    Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75<sup>NTR </sup>neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75<sup>NTR </sup>induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75<sup>NTR </sup>-induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75<sup>NTR</sup>, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue.</p> <p>Methods</p> <p>Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75<sup>NTR </sup>and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined.</p> <p>Results</p> <p>Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75<sup>NTR </sup>receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade-dependent manner (p < 0.05). Interestingly, a statistically significant (p < 0.05) reverse relationship between Trk receptors LIs and pc-Jun/pJNK LIs was noted in some glioblastomas multiforme.</p> <p>Conclusion</p> <p>In the context of astrocytomas, Trk receptors (TrkA, TrkB, TrkC) expression may promote tumor growth independently of grade. Furthermore, activation of JNK pathway may contribute to progression towards malignancy. Considering the fact that regional tumor heterogeneity may be a limiting factor for immunohistochemical studies, the significance of the reverse relationship between Trk receptors and pc-Jun/pJNK LIs with respect to biological behavior of human astrocytomas requires further evaluation.</p

    NGF and proNGF Regulate Functionally Distinct mRNAs in PC12 Cells: An Early Gene Expression Profiling

    Get PDF
    The biological activities of NGF and of its precursor proNGF are quite distinct, due to different receptor binding profiles, but little is known about how proNGF regulates gene expression. Whether proNGF is a purely pro-apoptotic molecule and/or simply a “less potent NGF” is still a matter of debate. We performed experiments to address this question, by verifying whether a proNGF specific transcriptional signature, distinct from that of NGF, could be identified. To this aim, we studied gene expression regulation by proNGF and NGF in PC12 cells incubated for 1 and 4 hours with recombinant NGF and proNGF, in its wild-type or in a furin-cleavage resistant form. mRNA expression profiles were analyzed by whole genome microarrays at early time points, in order to identify specific profiles of NGF and proNGF. Clear differences between the mRNA profiles modulated by the three neurotrophin forms were identified. NGF and proNGF modulate remarkably distinct mRNA expression patterns, with the gene expression profile regulated by NGF being significantly more complex than that by proNGF, both in terms of the total number of differentially expressed mRNAs and of the gene families involved. Moreover, while the total number of genes modulated by NGF increases dramatically with time, that by proNGFs is unchanged or reduced. We identified a subset of regulated genes that could be ascribed to a “pure proNGF” signalling, distinct from the “pure NGF” one. We also conclude that the composition of mixed NGF and proNGF samples, when the two proteins coexist, influences the profile of gene expression. Based on this comparison of the gene expression profiles regulated by NGF and its proNGF precursor, we conclude that the two proteins activate largely distinct transcriptional programs and that the ratio of NGF to proNGF in vivo can profoundly influence the pattern of regulated mRNAs

    Neuroregeneration in neurodegenerative disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach.</p> <p>Discussion</p> <p>Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies.</p> <p>Summary</p> <p>In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.</p

    The L 98-59 System: Three Transiting, Terrestrial-Size Planets Orbiting A Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R⊕ to 1.6 R⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R ⊕ to 1.6 R ⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF)

    Get PDF
    This work has been supported by Bristol Research into Alzheimer’s and Care of the Elderly (BRACE), the Sigmund Gestetner Trust Fund (University of Bristol), the Alzheimer’s Society and the Alumni of the University of Bristol. K.C. and D.J.W. were supported by UK Wellcome Trust-MRC Neurodegenerative Disease Initiative Programme. J.H.Y. was supported by the Korea-UK Alzheimer’s Research Consortium Programme under the Korean Ministry of Health and Welfare. T.M.P. and S.C. were supported by Bristol-Chonnam Frontier Programme under the Chonnam National University Hospital. K.C. was supported by the Wolfson Research Merit Award and Royal Society, London.This study describes a fundamental functional difference between the two main polymorphisms of the pro-form of brain-derived neurotrophic factor (proBDNF), providing an explanation as to why these forms have such different age-related neurological outcomes. Healthy young carriers of the Met66 form (present in ∼30% Caucasians) have reduced hippocampal volume and impaired hippocampal-dependent memory function, yet the same polymorphic population shows enhanced cognitive recovery after traumatic brain injury, delayed cognitive dysfunction during aging, and lower risk of late-onset Alzheimer’s disease (AD) compared to those with the more common Val66 polymorphism. To examine the differences between the protein polymorphisms in structure, kinetics of binding to proBDNF receptors and in vitro function, we generated purified cleavage-resistant human variants. Intriguingly, we found no statistical differences in those characteristics. As anticipated, exogenous application of proBDNF Val66 to rat hippocampal slices dysregulated synaptic plasticity, inhibiting long-term potentiation (LTP) and facilitating long-term depression (LTD). We subsequently observed that this occurred via the glycogen synthase kinase 3β (GSK3β) activation pathway. However, surprisingly, we found that Met66 had no such effects on either LTP or LTD. These novel findings suggest that, unlike Val66, the Met66 variant does not facilitate synapse weakening signaling, perhaps accounting for its protective effects with aging.Publisher PDFPeer reviewe

    ProNGF Induces PTEN via p75NTR to Suppress Trk-Mediated Survival Signaling in Brain Neurons

    No full text
    Proneurotrophins and mature neurotrophins activate different signaling pathways with distinct effects on their target cells: proneurotrophins can induce apoptotic signaling via p75(NTR) while mature neurotrophins activate Trk receptors to influence survival and differentiation. Here we demonstrate that the PTEN phosphatase represents a novel switch between the survival and apoptotic signaling pathways in rat CNS neurons. Simultaneous activation of p75(NTR) by proNGF, and TrkB signaling by BDNF elicited apoptosis despite TrkB phosphorylation. Apoptosis induced by p75(NTR) required suppression of TrkB-induced PI(3) kinase signaling, mediated by induction of PTEN, for apoptosis to proceed. Inhibition of PTEN restored the ability of BDNF to phosphorylate Akt and protect cultured basal forebrain neurons from proNGF-induced death. In vivo, inhibition or knockdown of PTEN following pilocarpine-induced seizures protected CNS neurons from p75(NTR)-mediated death, demonstrating that PTEN is a crucial factor mediating the balance between p75(NTR)-induced apoptotic signaling and Trk-mediated survival signaling in brain neurons
    corecore