2,374 research outputs found
Fabrication and Characterization of Mg- and Hg-doped CdS Nanostructured Thin Films Deposited by Chemical Bath Deposition
In this paper we report the preparation of Hg- and Mg-doped nanostructured CdS thin films deposited on commercial glass slide substrate by chemical bath deposition technique at room temperature. The asdeposited doped CdS nanostructured thin films were characterized using X-ray diffractometer, SEM and UV-VIS spectrophotometer. The SEM micrographs confirmed the formation of doped CdS thin film with
nano-structured morphologies. The EDX studies confirm chemical composition of Hg- and Mg-doped nanostructured CdS thin films.The XRD studies confirmed the crystalline nature of thin films and nanostructured behavior. The optical studies reveal the optical energy bandgap of 3.82eV(12hrs) & 3.74eV(24hrs) and 3.59 (12hrs) & 3.22eV (24hrs) for Mg-doped CdS and Hg-doped CdS nanostructured thin films respectively. Blue shift was observed in both the doped CdS nanostructured thin films
The suppression of magnetism and the development of superconductivity within the collapsed tetragonal phase of Ca0.67Sr0.33Fe2As2 at high pressure
Structural and electronic characterization of (Ca0.67Sr0.33)Fe2As2 has been
performed as a func- tion of pressure up to 12 GPa using conventional and
designer diamond anvil cells. The compound (Ca0.67Sr0.33)Fe2As2 behaves
intermediate between its end members-CaFe2As2 and SrFe2As2- displaying a
suppression of magnetism and the onset of superconductivity. Like other members
of the AEFe2As2 family, (Ca0.67Sr0.33)Fe2As2 undergoes a pressure-induced
isostructural volume collapse, which we associate with the development of As-As
bonding across the mirror plane of the structure. This collapsed tetragonal
phase abruptly cuts off the magnetic state, giving rise to superconductivity
with a maximum Tc=22.2 K. The maximum Tc of the superconducting phase is not
strongly correlated with any structural parameter, but its proximity to the
abrupt suppression of magnetism as well as the volume collapse transition
suggests that magnetic interactions and structural inhomogeneity may play a
role in its development. The pressure-dependent evolution of the ordered states
and crystal structures in (Ca,Sr)Fe2As2 provides an avenue to understand the
generic behavior of the other members of the AEFe2As2 family.Comment: 9 pages, 9 figure
Diurnal and seasonal variations of <i>hm</i>F2 deduced from digitalionosonde over New Delhi and its comparison with IRI 2001
International audienceUsing digital ionosonde observations at a low mid-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N), we have derived hourly monthly values of hmF2 (the real height corresponding to the peak electron density in the F2-region), employing both the Dudeney (1983) and Bilitza (1990) empirical formulations for the period from January 2001 to August 2002. The diurnal and seasonal variations of hmF2 are analyzed. Further, to assess the predictability of the latest available model, International Reference Ionosphere, (IRI-2001), we have obtained the median values of hmF2 derived from M(3000)F2 for each hour during different seasons and compare these with the model. Our results show that both the Dudeney (1983) and Bilitza (1990) formulations reveal more or less a similar diurnal trend of hmF2, with higher values around midnight and lower during sunrise, in all the seasons. It is also noted that the hmF2 shows a larger variability around midnight than by daytime, in all the seasons. Further, the study shows that median values of observed hmF2, using both formulations, are somewhat larger than those predicted by the IRI, in all seasons and at all local times. During summer, the IRI values agree comparatively well with the observations, especially during daytime. Major discrepancies occur when the IRI underestimates observed hmF2 for local times from about 14:00 LT to 18:00 LT and 04:00 LT to 05:00 LT during winter and equinox, where the percentage deviation of the observed hmF2 values with respect to the IRI model varies from 15 to 25%. The difference between the model and observations, outside this time period, remains less than 20% during all the seasons. Key words. Ionosphere (modelling and forecasting; equatorial ionosphere
Welfare and Revenue Guarantees for Competitive Bundling Equilibrium
We study equilibria of markets with heterogeneous indivisible goods and
consumers with combinatorial preferences. It is well known that a
competitive equilibrium is not guaranteed to exist when valuations are not
gross substitutes. Given the widespread use of bundling in real-life markets,
we study its role as a stabilizing and coordinating device by considering the
notion of \emph{competitive bundling equilibrium}: a competitive equilibrium
over the market induced by partitioning the goods for sale into fixed bundles.
Compared to other equilibrium concepts involving bundles, this notion has the
advantage of simulatneous succinctness ( prices) and market clearance.
Our first set of results concern welfare guarantees. We show that in markets
where consumers care only about the number of goods they receive (known as
multi-unit or homogeneous markets), even in the presence of complementarities,
there always exists a competitive bundling equilibrium that guarantees a
logarithmic fraction of the optimal welfare, and this guarantee is tight. We
also establish non-trivial welfare guarantees for general markets, two-consumer
markets, and markets where the consumer valuations are additive up to a fixed
budget (budget-additive).
Our second set of results concern revenue guarantees. Motivated by the fact
that the revenue extracted in a standard competitive equilibrium may be zero
(even with simple unit-demand consumers), we show that for natural subclasses
of gross substitutes valuations, there always exists a competitive bundling
equilibrium that extracts a logarithmic fraction of the optimal welfare, and
this guarantee is tight. The notion of competitive bundling equilibrium can
thus be useful even in markets which possess a standard competitive
equilibrium
- …
