160 research outputs found

    Tubular cell proliferation in the healthy rat kidney

    Get PDF
    We searched for morphological evidence to support the hypothesis that stem cells are responsible for renal tubular cell proliferation. The rationale of the study was that if proliferation relies on progenitors, mitotically active cells should be less differentiated than their neighbors. As the retention of the thymidine analog BrdU has been the only approach employed to identify stem cells in the kidney up to now we additionally characterized BrdU-retaining cells. Rat kidneys were fixed by perfusion. Cycling cells identified by mitotic figures or the expression of the proliferating cell nuclear antigen (PCNA) were examined by light microscopy and electron microscopy as well as immunofluorescence for four differentiation markers. Newborn rats were injected with BrdU in order to detect label-retaining cells. After a period of 8, 14 and 35weeks the kidneys were examined for BrdU by immunofluorescence and the four differentiation markers mentioned above. All cycling cells showed the same degree of differentiation compared to non-cycling cells. Most of the detected label-retaining cells were differentiated. We conclude that cycling cells in tubules of the healthy kidney are differentiated and that the retention of label is not a criterion to identify stem cells in renal tubule

    Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat

    Get PDF
    Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial-mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1day of UUO an increasing expression of alpha-smooth muscle actin (αSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5′-nucleotidase (5′NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that mode

    Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat

    Get PDF
    Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial–mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1 day of UUO an increasing expression of alpha-smooth muscle actin (αSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5′-nucleotidase (5′NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that model

    Primitiver neuroektodermaler Tumor im Hoden: Molekulare Analyse und Diskussion der Entstehung

    Get PDF
    Zusammenfassung: Wir beschreiben einen testikulären primitiven neuroektodermalen Tumor (PNET) mit intratubulärer Keimzellneoplasie des angrenzenden Hodenparenchyms bei einem 25-jährigen Patienten. Testikuläre PNET sind selten. Ihre Entstehung wird auf eine maligne somatische Transformation in einem testikulären Keimzelltumor zurückgeführt. Morphologisch und molekularpathologisch ähneln diese Tumoren kindlichen zentralen PNET, die keine Rearrangierung des EWS-Gens auf Chromosom22 aufweisen. Auch im hier beschriebenen Fall konnte keine Translokation nachgewiesen werde

    Protein atlas of fibroblast specific protein 1 (FSP1)/S100A4

    Full text link
    Fibroblast specific protein 1 (FSP1)/S100A4 is a calcium binding protein which has been linked to epithelial-mesenchymal transition, tissue fibrosis, pulmonary vascular disease, metastatic tumour development, increased tumour cell motility and invasiveness. This protein is reported to be also expressed in newly formed and differentiated fibroblasts and has been used in various studies to demonstrate epithelial-mesenchymal transition (EMT). We aimed to characterize S100A4 positive cells in different human tissue compartments, with the focus on fibroblasts/myofibroblast. We found S100A4 expression in a wide range of cells. Fibroblasts/myofibroblasts showed a broad spectrum of staining intensity, ranging from negative to strong expression of S100A4, with the strongest expression in smooth muscle actin positive myofibroblasts. Cells of haematopoietic lineage, namely CD4 and CD8 positive T-lymphocytes, but not B-lymphocytes expressed S100A4. All investigated monocytes, macrophages and specialised histiocytes were positive for S100A4. Even some epithelial cells of the kidney and bladder were positive for S100A4. Expression was also found in the vasculature. Here, cells of the subendothelial space, tunica adventitia and some smooth muscle cells of the tunica media were positive for S100A4. In summary, S100A4 is expressed in various cell types of different lineage and is not, as originally believed, specific for fibroblasts (FSP). Results attained under the premise of specificity of FSP1/S100A4 for fibroblasts, like the founding research on EMT type 2 in kidney and liver, therefore need to be reinterpreted

    Immunolocalization of phospho-S6 kinases: a new way to detect mitosis in tissue sections and in cell culture

    Get PDF
    During a study on the mTor pathway in the rat kidney we observed a striking increase of the phosphorylation of the S6 kinase in mitosis. In cryostat sections of perfusion-fixed tissue mitotic cells appeared as bright spots in immunofluorescence using an antibody specific for the phosphorylation site Thr421/Ser424. They were easily spotted in overviews with the objective 4× and 10×. Immunofluorescence was weak during the interphase. During the prophase it increased in both the nucleus and the cytoplasm and it remained bright during the subsequent phases of mitosis. All mitotic cells which were found in tubules and in the interstitium of the kidney using a chromatin stain displayed the bright immunofluorescence for phospho-S6 kinase. The same phenomenon was observed in rat liver and in mouse kidney as well as in a human cell line. Provided a rapid fixation, mitotic cells could be identified with the immunoperoxidase technique in paraffin sections of immersion-fixed tissue. This is the first report of phosphorylation of S6 kinase during mitosis in vivo. Thus, immunohistochemistry with anti-phospho-S6 kinase (Thr421/Ser424) appears to provide a convenient way to detect mitotic cells at low magnificatio

    Overexpression of eIF3a in Squamous Cell Carcinoma of the Oral Cavity and Its Putative Relation to Chemotherapy Response

    Get PDF
    The eukaryotic translation initiation factor eIF3a is one of the core subunits of the translation initiation complex eIF3, responsible for ribosomal subunit joining and mRNA recruitment to the ribosome. It is known to play an important role in general translation initiation as well as in the specific translational regulation of various gene products, among which many influence tumour development, progression, and the therapeutically important pathways of DNA damage repair. Therefore, beyond its role in protein synthesis, eIF3a is emerging as regulator in tumour pathogenesis and therapy response and, therefore, a potential tumor marker. By means of a tissue microarray (TMA) for histopathological and statistical assessment, we here show eIF3a expression in 103 cases of squamous cell carcinoma of the oral cavity (OSCC), representing tissues from 103 independent patients. A subset of the study cohort was treated with platinum based therapy. Our results show that the 170 kDa protein is upregulated in OSCC and correlates with good overall survival. Overexpressing tumors respond better to platinum-based chemotherapy, suggesting eIF3a as a putative predictive as well as prognostic tumor marker in OSCC

    Tubular cell proliferation in the healthy rat kidney

    Full text link
    We searched for morphological evidence to support the hypothesis that stem cells are responsible for renal tubular cell proliferation. The rationale of the study was that if proliferation relies on progenitors, mitotically active cells should be less differentiated than their neighbors. As the retention of the thymidine analog BrdU has been the only approach employed to identify stem cells in the kidney up to now we additionally characterized BrdU-retaining cells. Rat kidneys were fixed by perfusion. Cycling cells identified by mitotic figures or the expression of the proliferating cell nuclear antigen (PCNA) were examined by light microscopy and electron microscopy as well as immunofluorescence for four differentiation markers. Newborn rats were injected with BrdU in order to detect label-retaining cells. After a period of 8, 14 and 35weeks the kidneys were examined for BrdU by immunofluorescence and the four differentiation markers mentioned above. All cycling cells showed the same degree of differentiation compared to non-cycling cells. Most of the detected label-retaining cells were differentiated. We conclude that cycling cells in tubules of the healthy kidney are differentiated and that the retention of label is not a criterion to identify stem cells in renal tubule

    Toward the Identification of a “Renopoietic System”?

    Get PDF
    Chronic kidney disease is a leading cause of mortality and morbidity in Western countries and is estimated to affect 11% of the adult population. The possibility of treatment of chronic kidney disease has been severely impaired by our poor knowledge of the regenerative properties of the kidney. Recent results obtained in humans, together with genetic tagging experiments performed in rodents, demonstrated that the epithelial components of the cortical nephron share a unique progenitor, which can generate podocytes as well as tubular cells. Accordingly, lineage tracing experiments demonstrated that bone marrow-derived interstitial or papillary cells are not involved in the repair of injured adult renal epithelium. In addition, assessment of the markers CD24 and CD133 in adult human kidney as well as genetic tagging in rodents allowed us to identify a hierarchical population of renal progenitors arranged in a precise sequence within Bowman's capsule. The results of all of these studies suggest that the kidney contains a “renopoietic system,” with a progenitor localized at the urinary pole of Bowman's capsule, from where it can initiate the replacement and regeneration of glomerular, as well as tubular, epithelial cells. Knowledge of renal progenitor cell biology may enable a better comprehension of the mechanisms of renal repair as well as more effective targeted therapies for acute and chronic kidney diseases
    corecore