2,057 research outputs found

    The proton-proton weak capture in chiral effective field theory

    Full text link
    The astrophysical S-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the A=3 binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium beta decay. Contributions from S and P partial waves in the incoming two-proton channel are retained. The S-factor at zero energy is found to be S(0)=(4.030 +/- 0.006) x 10^{-23} MeV fm^2, with a P-wave contribution of 0.020 x 10^{-23} MeV fm^2. The theoretical uncertainty is due to the fitting procedure of the LEC's and to the cutoff dependence.Comment: 4 pages, 3 figures; revisited version accepted for publication on Phys. Rev. Lett. A misprint in Table II has been correcte

    The two-nucleon electromagnetic charge operator in chiral effective field theory (χ\chiEFT) up to one loop

    Full text link
    The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory (χ\chiEFT) up to order eQe\, Q (or N4LO), where QQ denotes the low-momentum scale and ee is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the non-static terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the non-uniqueness associated with these off-the-energy-shell effects.Comment: 16 pages, 10 figure

    Electromagnetic Structure and Reactions of Few-Nucleon Systems in χ\chiEFT

    Full text link
    We summarize our recent work dealing with the construction of the nucleon-nucleon potential and associated electromagnetic currents up to one loop in chiral effective field theory (χ\chiEFT). The magnetic dipole operators derived from these currents are then used in hybrid calculations of static properties and low-energy radiative capture processes in few-body nuclei. A preliminary set of results are presented for the magnetic moments of the deuteron and trinucleons and thermal neutron captures on pp, dd, and 3^3He.Comment: Invited talk to the 19th International IUPAP Conference on Few-Body Problems in Physic

    Electromagnetic processes in a χ\chiEFT framework

    Full text link
    Recently, we have derived a two--nucleon potential and consistent nuclear electromagnetic currents in chiral effective field theory with pions and nucleons as explicit degrees of freedom. The calculation of the currents has been carried out to include N3^3LO corrections, consisting of two--pion exchange and contact contributions. The latter involve unknown low-energy constants (LECs), some of which have been fixed by fitting the npnp S- and P-wave phase shifts up to 100 MeV lab energies. The remaining LECs entering the current operator are determined so as to reproduce the experimental deuteron and trinucleon magnetic moments, as well as the npnp cross section. This electromagnetic current operator is utilized to study the ndnd and n3n^3He radiative captures at thermal neutron energies. Here we discuss our results stressing on the important role played by the LECs in reproducing the experimental data.Comment: Invited talk at the 5th International Conference on Quarks and Nuclear Physics, to appear in Chinese Physics

    Electrodisintegration of 3^3He below and above deuteron breakup threshold

    Full text link
    Recent advances in the study of electrodisintegration of 3He are presented and discussed. The pair-correlated hyperspherical harmonics method is used to calculate the initial and final state wave functions, with a realistic Hamiltonian consisting of the Argonne v18 two-nucleon and Urbana IX three-nucleon interactions. The model for the nuclear current and charge operators retains one- and many-body contributions. Particular attention is made in the construction of the two-body current operators arising from the momentum-dependent part of the two-nucleon interaction. Three-body current operators are also included so that the full current operator is strictly conserved. The present model for the nuclear current operator is tested comparing theoretical predictions and experimental data of pd radiative capture cross section and spin observables.Comment: 5 pages, 5 figures, submitted to Eur. Phys. J.

    Fermionic bound states in Minkowski-space: Light-cone singularities and structure

    Full text link
    The Bethe-Salpeter equation for two-body bound system with spin 1/21/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one i) to deal with end-point singularities one meets and ii) to find stable results, up to strongly relativistic regimes, that settles in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0+0^+ state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 00^- state, taking both constituent-fermion and exchanged boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom.Comment: 22 pages, 7 figures, bst file include

    Electromagnetic structure of A=2 and 3 nuclei and the nuclear current operator

    Full text link
    Different models for conserved two- and three-body electromagnetic currents are constructed from two- and three-nucleon interactions, using either meson-exchange mechanisms or minimal substitution in the momentum dependence of these interactions. The connection between these two different schemes is elucidated. A number of low-energy electronuclear observables, including (i) npnp radiative capture at thermal neutron energies and deuteron photodisintegration at low energies, (ii) ndnd and pdpd radiative capture reactions, and (iii) isoscalar and isovector magnetic form factors of 3^3H and 3^3He, are calculated in order to make a comparative study of these models for the current operator. The realistic Argonne v18v_{18} two-nucleon and Urbana IX or Tucson-Melbourne three-nucleon interactions are taken as a case study. For AA=3 processes, the bound and continuum wave functions, both below and above deuteron breakup threshold, are obtained with the correlated hyperspherical-harmonics method. Three-body currents give small but significant contributions to some of the polarization observables in the 2^2H(p,γp,\gamma)3^3He process and the 2^2H(n,γn,\gamma)3^3H cross section at thermal neutron energies. It is shown that the use of a current which did not exactly satisfy current conservation with the two- and three-nucleon interactions in the Hamiltonian was responsible for some of the discrepancies reported in previous studies between the experimental and theoretical polarization observables in pdpd radiative capture.Comment: 48 pages, 25 figures, 4 tables, revtex4. Submitted to Phys. Rev.

    Chiral effective field theory predictions for muon capture on deuteron and 3He

    Full text link
    The muon-capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c_D and c_E, present in the three-nucleon potential and (c_D) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. The muon capture rates on deuteron and 3He are predicted to be 399(3) sec^{-1} and 1494 (21) sec^{-1}, respectively, where the spread accounts for the cutoff sensitivity as well as uncertainties in the LEC's and electroweak radiative corrections. By comparing the calculated and precisely measured rates on 3He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction.Comment: 4 pages, 2 figures, revisited version accepted for publication on Phys. Rev. Let

    Electromagnetic transitions for A=3 nuclear systems

    Full text link
    Recent advances in the study of pd radiative capture in a wide range of center-of-mass energy below and above deuteron breakup threshold are presented and discussed.Comment: Invited lead talk at the 19th European Conference on Few-Body Problems in Physics, Groningen, The Netherlands, 8/23 - 8/27 2004, 5 pages, 4 figure

    Electromagnetic structure of A=2 and 3 nuclei in chiral effective field theory

    Get PDF
    The objectives of the present work are twofold. The first is to address and resolve some of the differences present in independent, chiral-effective-field-theory (\chiEFT) derivations up to one loop, recently appeared in the literature, of the nuclear charge and current operators. The second objective is to provide a complete set of \chiEFT predictions for the structure functions and tensor polarization of the deuteron, for the charge and magnetic form factors of 3He and 3H, and for the charge and magnetic radii of these few-nucleon systems. The calculations use wave functions derived from high-order chiral two- and three-nucleon potentials and Monte Carlo methods to evaluate the relevant matrix elements. Predictions based on conventional potentials in combination with \chiEFT charge and current operators are also presented. There is excellent agreement between theory and experiment for all these observables for momentum transfers up to q< 2.0-2.5 (1/fm); for a subset of them, this agreement extends to momentum transfers as high as q~5-6 (1/fm). A complete analysis of the results is provided.Comment: 34 pages, Revte
    corecore