14 research outputs found

    First fossil marsupials from India: early Eocene Indodelphis n. gen. and Jaegeria n. gen. from the Vastan Lignite mine, District Surat, Gujarat

    Get PDF
    We report the discovery of fossil marsupials (Didelphidae: Mammalia) from India, based on well-preserved lower molars of two taxa (Indodelphis Inoi n. gen. and n. sp. and Jaegeria cambayensis n. gen. and n. sp.) from the early Eocene (middle Ypresian, approximately 52 Ma) deposits of Vastan Lignite Mine, District Surat, Gujarat, western India. These species probably represent the oldest known record of Cenozoic marsupials from Asia, and they occur in association with a diverse land mammal fauna comprising perissodactyls, artiodactyls, insectivores, proteutherians, apatotherians, bats, rodents, and several other taxa currently under study

    Early eocene primates from Vastan lignite mine, Gujarat, western India

    Get PDF
    A new primate fauna of early Eocene (Ypresian, approximately 52 Ma) age is reported from the Vastan Lignite Mine, District Surat, Gujarat, western India. From the Indian subcontinent, this is the oldest known Cenozoic rocord as well as the largest single sample of Eocene primates, consisting of 3 fragmentary jaws and 4 isolated upper cheek teeth. The assemblage comprises at least three, but possibly 4 taxa, of which only two are being named here, an adapiform Marcgodinotius indicus n. gen. & n. sp., and an omomyid Vastanomys gracilis n. gen. & n. sp., distinguished mainly on the basis of their lower dental formula and lower molar characteristics. The fauna indicates considerable diversity of Eocene primates in Indo-Pakistan and is important in understanding early primate evolution in Asia and the mammalian dispersal into, or out of, from India in response to changing paleogeographic settings associated with the initiation of India-Asia collision

    Earliest cenozoic frogs from the Indian subcontinent: implications for out-of-India hypothesis

    No full text
    This paper describes the earliest Cenozoic anurans from the Indian subcontinent, recovered from the early Eocene Cambay Shale deposits (-53.5 Ma) of the Vastan Lignite Mine, Gujarat, western India. The fauna comprises representatives of three distinct groups with Laurasian (Discoglossidae) and Gondwanan (Ranoidea and Leptodactylidae) affinities. The ranoids, previously recorded from the terminal Cretaceous of peninsular India, are particularly significant as they support an Out-of-India dispersal

    El anĂĄlisis de cenogramas como indicador del habitat en comunidades de mamĂ­feros del paleogeno-neogeno a nivel global, con especial ĂŠnfasis en la comunidad de mamĂ­feros del eoceno de Cambay Shale, India

    No full text
    This work was supported by projects of the Spanish Ministries of Education, Science and Innovation (PGC2018-094122-B-I00; PGC2018-094955-A-I00) Referencias bibliográficas: • Alroy, J. (2000). New methods for quantifying macroevolutionary patterns and processes. Paleobiology, 26(4), 707-733. 10.1666/0094-8373(2000)026 • Amezua, L., Salesa, M. J., Perez, B., Pelaez-Campomanes, P., Fraile, S., Morales, J., & Nieto, M. (2000). Paleoecología. Patrimonio Paleontológico De La Comunidad De Madrid, , 155-172. • Anderson, J. F., Hall‐Martin, A., & Russell, D. A. (1985). Long‐bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology, 207(1), 53-61. 10.1111/j.1469-7998.1985.tb04915.x • Andersson, K. (2004). Predicting carnivoran body mass from a weight-bearing joint. Journal of Zoology, 262(2), 161-172. 10.1017/S0952836903004564 • Bai, B., Wang, Y. -., & Meng, J. (2018). The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia. Communications Biology, 1(1)10.1038/s42003-018-0116-5 • Bajpai, S., Das, D. P., Kapur, V. V., Tiwari, B. N., & Srivastava, S. S. (2007). Early Eocene rodents (Mammalia) from Vastan Lignite Mine, Gujarat, western India. Gondwana Geological Magazine, 22(2), 91-95. • Bajpai, S., Kapur, V. V., Das, D. P., & Tiwari, B. N. (2007). New Early Eocene primate (Mammalia) from Vastan Lignite Mine, District Surat (Gujarat), western India. J.Palaeontol.Soc.India, 52(2), 231-234. • Bajpai, S., Kapur, V. V., Das, D. P., Tiwari, B. N., Saravanan, N., & Sharma, R. (2005a). Early Eocene land mammals from Vastan Lignite Mine, District Surat (Gujarat), western India. Journal of the Palaeontological Society of India, 50(1), 101-113. • Bajpai, S., Kapur, V. V., & Thewissen, J. G. M. (2009). Creodont and condylarth from the Cambay Shale (Early Eocene), Vastan lignite mine, Gujarat, Western India. Journal of the Palaeontological Society of India, 54(1), 103-109. • Bajpai, S., Kapur, V. V., Thewissen, J. G. M., Das, D. P., Tiwari, B. N., Sharma, R., & Saravanan, N. (2005b). Early Eocene primates from Vastan Lignite Mine, Gujarat, western India. Journal of the Palaeontological Society of India, 50(2), 43-54. • Bajpai, S., Kay, R. F., Williams, B. A., Das, D. P., Kapur, V. V., & Tiwari, B. N. (2008). The oldest Asian record of Anthropoidea. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11093-11098. 10.1073/pnas.0804159105 • Bhattarai, K. R., & Pathak, M. L. (2015). A new species of Ziziphus (Rhamnaceae) from Nepal Himalayas. Indian Journal of Plant Sciences, 4(2), 71-77. • Bown, T. M., Holroyd, P. A., & Rose, K. D. (1994). Mammal extinctions, body size, and paleotemperature. Proceedings of the National Academy of Sciences of the United States of America, 91(22), 10403-10406. 10.1073/pnas.91.22.10403 • Christiansen, P. (2004). Body size in proboscideans, with notes on elephant metabolism. Zoological Journal of the Linnean Society, 140(4), 523-549. 10.1111/j.1096-3642.2004.00113.x • Clementz, M., Bajpai, S., Ravikant, V., Thewissen, J. G. M., Saravanan, N., Singh, I. B., & Prasad, V. (2011). Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology, 39(1), 15-18. 10.1130/G31585.1 • Cooper, L. N., Seiffert, E. R., Clementz, M., Madar, S. I., Bajpai, S., Hussain, S. T., & Thewissen, J. G. M. (2014). Anthracobunids from the middle eocene of India and Pakistan are stem perissodactyls. PLoS ONE, 9(10)10.1371/journal.pone.0109232 • Costeur, L. (2005). Cenogram analysis of the Rudabánya mammalian community: palaeoenvironmental interpretations. Palaeontogr.It, 90, 303-307. • Costeur, L., & Legendre, S. (2008). Mammalian communities document a latitudinal environmental gradient during the Miocene Climatic Optimum in western Europe. Palaios, 23(5-6), 280-288. 10.2110/palo.2006.p06-092r • Creighton, G. K. (1980). Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. Journal of Zoology, 191(4), 435-443. 10.1111/j.1469-7998.1980.tb01475.x • Dagosto, M., & Terranova, C. J. (1992). Estimating the body size of eocene primates: A comparison of results from dental and postcranial variables. International Journal of Primatology, 13(3), 307-344. 10.1007/BF02547818 • Damuth, J., & MacFadden, B. J. (1990). Introduction: Body size and its estimation. Body Size in Mammalian Paleobiology: Estimation and Biological Implications, , 1-10. • Danilo, L., Remy, J. A., Vianey-Liaud, M., Marandat, B., Sudre, J., & Lihoreau, F. (2013). A new Eocene locality in southern France sheds light on the basal radiation of Palaeotheriidae (Mammalia, Perissodactyla, Equoidea). Journal of Vertebrate Paleontology, 33(1), 195-215. 10.1080/02724634.2012.711404 • Das, D. P. (2007). No title. Early Eocene Small Mammal Fauna from Vastan Lignite Mine, Gujarat, Western India, • Deng, T. (2009). Late Cenozoic environmental changes in the Linxia Basin (Gansu, China) as indicated by cenograms of fossil mammals. Vertebrata PalAsiatica, 47(4), 282-298. • DeSantis, L. R. G., & MacFadden, B. (2007). Identifying forested environments in deep time using fossil tapirs: Evidence from evolutionary morphology and stable isotopes • Domingo, L., Koch, P. L., Hernández Fernández, M., Fox, D. L., Domingo, M. S., & Alberdi, M. T. (2013). Late Neogene and Early Quaternary Paleoenvironmental and Paleoclimatic Conditions in Southwestern Europe: Isotopic Analyses on Mammalian Taxa. PLoS ONE, 8(5)10.1371/journal.pone.0063739 • Dutta, S., Tripathi, S. M., Mallick, M., Mathews, R. P., Greenwood, P. F., Rao, M. R., & Summons, R. E. (2011). Eocene out-of-India dispersal of Asian dipterocarps. Review of Palaeobotany and Palynology, 166(1-2), 63-68. 10.1016/j.revpalbo.2011.05.002 • Egi, N., Takai, M., Shigehara, N., & Tsubamoto, T. (2004). Body Mass Estimates for Eocene Eosimiid and Amphipithecid Primates Using Prosimian and Anthropoid Scaling Models. International Journal of Primatology, 25(1), 211-236. 10.1023/B:IJOP.0000014651.82525.54 • Fernández, M. H. (2001). Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecology and Biogeography, 10(2), 189-204. 10.1046/j.1466-822x.2001.00218.x • Gangopadhyay, M., & Chakrabarty, T. (1997). The family Combretaceae of Indian subcontinent. J.Econ.Taxon.Bot., 21(2), 281-364. • García Yelo, B. A., Gómez Cano, A. R., Cantalapiedra, J. L., Alcalde, G. M., Sanisidro, O., Oliver, A., . . . Hernández Fernández, M. (2014). Palaeoenvironmental analysis of the Aragonian (middle Miocene) mammalian faunas from the Madrid Basin based on body-size structure. Journal of Iberian Geology, 40(1), 129-140. 10.5209/rev_JIGE.2014.v40.n1.44092 • Garg, R., Ateequzzaman, K., Prasad, V., Tripathi, S. K. M., Singh, I. B., Jauhri, A. K., & Bajpai, S. (2008). Age-diagnostic dinoflagellate cysts from lignite-bearing sediments of the Vastan lignite mine, Surat District, Gujarat, western India. J.Palaeontol.Soc.India, 53(1), 99-105. • Gholave, A. R., Kambale, S. S., Lekhak, M. M., & Yadav, S. R. (2015). Combretum shivannae (Combretaceae), a new species from India. Kew Bulletin, 70(3)10.1007/s12225-015-9582-9 • Gingerich, P. D. (1989). New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: Composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology, 28(28), 1-97. • Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, University of Michigan, 28(4), 79-92. • Gingerich, P. D., Smith, B. H., & Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58(1), 81-100. 10.1002/ajpa.1330580110 • Gómez Cano, A. R., García Yelo, B. A., & Hernández Fernández, M. (2006). Cenograms, bioclimatic analysis and fauna sampling of mammals: Implications for the application of paleoecological analysis methods. [Cenogramas, análisis bioclimático y muestreo en faunas de mamíferos: Implicaciones para la aplicación de métodos de análisis paleoecológico] Estudios Geologicos, 62(1), 135-144. • Gomez-Navarro, C., Jaramillo, C., Herrera, F., Wing, S. L., & Callejas, R. (2009). Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. American Journal of Botany, 96(7), 1300-1312. 10.3732/ajb.0800378 • Hernández Fernández, M., Alberdi, M. T., Azanza, B., Montoya, P., Morales, J., Nieto, M., & Peláez-Campomanes, P. (2006). Identification problems of arid environments in the Neogene-Quaternary mammal record of Spain. Journal of Arid Environments, 66(3 SPEC. ISS.), 585-608. 10.1016/j.jaridenv.2006.01.013 • Hooker, J. J. (2010). The mammal fauna of the early Eocene Blackheath Formation of Abbey Wood, London. Monograph of the Palaeontographical Society, 165(634), 1-162. • Kapur, V. V. (2006). Eocene Vertebrates from Lignite Mines of Gujarat (Western India) with Emphasis on Mammals. Eocene Vertebrates from Lignite Mines of Gujarat (Western India) with Emphasis on Mammals, • Kapur, V. V. (2020). Size Variation Amongst the Non-volant Mammals from the Early Eocene Cambay Shale Deposits of Western India: Paleobiogeographic implications10.1007/978-3-030-49753-8_13 • Kapur, V. V., Das, D. P., Bajpai, S., & Prasad, G. V. R. (2017a). Corrigendum to “First Mammal of Gondwanan lineage in the early Eocene of India” [C. R. Palevol, Kapur et al. 16 (2017)] (S1631068317300064) (10.1016/j.crpv.2017.01.002)). Comptes Rendus - Palevol, 16(7), 820. 10.1016/j.crpv.2017.07.001 • Kapur, V. V., Das, D. P., Bajpai, S., & Prasad, G. V. R. (2017b). First mammal of Gondwanan lineage in the early Eocene of India. [Premiers mammifères de la lignée gondwanienne dans l’Éocène inférieur de l'Inde] Comptes Rendus - Palevol, 16(7), 721-737. 10.1016/j.crpv.2017.01.002 • Kapur, V. V., Pickford, M., Chauhan, G., & Thakkar, M. G. (2021). A Middle Miocene (~14 Ma) vertebrate assemblage from Palasava, Rapar Taluka, Kutch (Kachchh) District, Gujarat State, western India. Historical Biology, 33(5), 595-615. 10.1080/08912963.2019.1648451 • Kapur, V., & Bajpai, S. (2015). Oldest South Asian tapiromorph (Perissodactyla, Mammalia) from the Cambay Shale Formation, western India, with comments on its phylogenetic position and biogeographic implications. Palaeobotanist, 64, 95-103. • Kay, R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 43(2), 195-215. 10.1002/ajpa.1330430207 • King, S. R. B. (2002). Home range and habitat use of free-ranging Przewalski horses at Hustai National Park, Mongolia. Applied Animal Behaviour Science, 78(2-4), 103-113. 10.1016/S0168-1591(02)00087-4 • Kumar, K., & Jolly, A. (1986). Earliest artiodactyl (Diacodexis, Dichobunidae: Mammalia) from the Eocene of Kalakot, north-western Himalaya, India. Bull.Ind.Soc.Geosci., 2, 20-30. • Kumar, K., Rose, K. D., Rana, R. S., Singh, L., Smith, T., & Sahni, A. (2010). Early Eocene artiodactyls (Mammalia) from Western India. Journal of Vertebrate Paleontology, 30(4), 1245-1274. 10.1080/02724634.2010.483605 • Kumar, K., & Sahni, A. (1985). Eocene mammals from the upper subathu group, Kashmir Himalaya, India. Journal of Vertebrate Paleontology, 5(2), 153-168. 10.1080/02724634.1985.10011853 • Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata, 16(4), 191-212. • Legendre, S. (1987). Les communautés de mammifères d'Europe occidentale de l'Éocène supérieur et Oligocène: Structures et milieux. Münchner Geowissenschaftliche Abhandlungen, 10(A), 301-312. • Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d'Europe occidentale: Structures, milieux et évolution. Münchner Geowiss.Abh.(A), 16, 1-110. • Legendre, S., & Roth, C. (1988). Correlation of carnassial tooth size and body weight in recent carnivores (mammalia). Historical Biology, 1(1), 85-98. 10.1080/08912968809386468 • MARTINEZ, J. ‐, & SUDRE, J. (1995). The astragalus of Paleogene artiodactyls: comparative morphology, variability and prediction of body mass. Lethaia, 28(3), 197-209. 10.1111/j.1502-3931.1995.tb01423.x • Mendoza, M., Janis, C. M., & Palmqvist, P. (2006). Estimating the body mass of extinct ungulates: A study on the use of multiple regression. Journal of Zoology, 270(1), 90-101. 10.1111/j.1469-7998.2006.00094.x • Millien, V., & Bovy, H. (2010). When teeth and bones disagree: Body mass estimation of a giant extinct rodent. Journal of Mammalogy, 91(1), 11-18. 10.1644/08-MAMM-A-347R1.1 • Mitchell, G., & Lust, A. (2008). The carotid rete and artiodactyl success. Biology Letters, 4(4), 415-418. 10.1098/rsbl.2008.0138 • Myers, T. J. (2001). Prediction of marsupial body mass. Australian Journal of Zoology, 49(2), 99-118. 10.1071/ZO01009 • Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. (2009). No title. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0, • Pemberton, R. W., & Ferriter, A. P. (1998). Old World Climbing Fern (Lygodium microphyllum), a Dangerous Invasive Weed in Florida. American Fern Journal, 88(4), 165-175. 10.2307/1547769 • Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42(4), 659-669. 10.1017/pab.2016.6 • Prasad, M., Singh, H., Singh, S. K., Mukherjee, D., & Ruiz, E. E. (2014). Early eocene arecoid palm wood, Palmoxylon vastanensis n. sp. from Vastan Lignite, Gujarat, India: Its palaeoenvironmental implications. Journal of the Palaeontological Society of India, 58(1), 115-123. • Prasad, V., Singh, I. B., Bajpai, S., Garg, R., Thakur, B., Singh, A., . . . Kapur, V. V. (2013). Palynofacies and sedimentology-based high-resolution sequence stratigraphy of the lignite-bearing muddy coastal deposits (early Eocene) in the Vastan Lignite Mine, Gulf of Cambay, India. Facies, 59(4), 737-761. 10.1007/s10347-012-0355-8 • Rana, R. S., Kumar, K., Escarguel, G., Sahni, A., Rose, K. D., Smith, T., . . . Singh, L. (2008). An ailuravine rodent from the lower Eocene Cambay Formation at Vastan, western India, and its palaeobiogeographic implications. Acta Palaeontologica Polonica, 53(1), 1-14. 10.4202/app.2008.0101 • Retallack, G. J., Bajpai, S., Liu, X., Kapur, V. V., & Pandey, S. K. (2018). Advent of strong South Asian monsoon by 20 million years ago. Journal of Geology, 126(1), 1-24. 10.1086/694766 • Rodríguez, J. (1999). Use of cenograms in mammalian palaeoecology. A critical review. Lethaia, 32(4), 331-347. 10.1111/j.1502-3931.1999.tb00551.x • Rolling, C. S. (1992). Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs, 62(4), 447-502. 10.2307/2937313 • Rose, K. D., Holbrook, L. T., Rana, R. S., Kumar, K., Jones, K. E., Ahrens, H. E., . . . Smith, T. (2014). Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nature Communications, 510.1038/ncomms6570 • Rose, K. D., Kumar, K., Rana, R. S., Sahni, A., & Smith, T. (2013). New hypsodont tillodont (Mammalia, Tillodontia) from the early eocene of India. Journal of Paleontology, 87(5), 842-853. 10.1666/13-027 • Rose, K. D., Rana, R. S., Sahni, A., Kumar, K., Singh, L., & Smith, T. (2009). First tillodont from India: Additional evidence for an early Eocene faunal connection between Europe and India? Acta Palaeontologica Polonica, 54(2), 351-355. 10.4202/app.2008.0067 • Rose, K. D., Rana, R. S., Sahni, A., & Smith, T. (2007). A new adapoid primate from the early Eocene of India. Contributions from the Museum of Paleontology, 31(14), 379-385. • Rosenberger, A. L., & Hartwig, W. C. (2013). No title. Primates (Lemurs, Lorises, Tarsiers, Monkeys and Apes), • Russell, D. E., Thewissen, J. G. M., & Sigogneau-Russell, D. (1983). A new dichobunid artiodactyl (Mammalia) from the eocene of northwest Pakistan. Proc.Koninkl.Nederl.Akad.Wetensch., 86(3), 285-300. • Saarikko, J. (1989). Foraging behaviour of shrews. Ann.Zool.Fennici, 26, 411-423. • Shukla, A., & Mehrotra, R. C. (2016). Holigarna (Anacardiaceae) from the early Eocene of Western India and its palaeogeographical and palaeoclimatological significance. Journal of the Geological Society of India, 87(5), 520-524. 10.1007/s12594-016-0425-6 • Smith, T., Kumar, K., Rana, R. S., Folie, A., Solé, F., Noiret, C., . . . Rose, K. D. (2016). New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities. Geoscience Frontiers, 7(6), 969-1001. 10.1016/j.gsf.2016.05.001 • Smith, T., Solé, F., Missiaen, P., Rana, R. S., Kumar, K., Sahni, A., & Rose, K. D. (2015). First early Eocene tapiroid from India and its implication for the paleobiogeographic origin of perissodactyls. Palaeovertebrata, 39(2) • Soler, R. M., Martínez Pastur, G., Lencinas, M. V., & Borrelli, L. (2013). Seasonal diet of Lama guanicoe (Camelidae: Artiodactyla) in a heterogeneous landscape of South Patagonia. [Dieta estacional de Lama guanicoe (Camelidae: Artiodactyla) en un paisaje heterogéneo de Patagonia Sur] Bosque, 34(2), 129-141. 10.4067/S0717-92002013000200002The present study is an attempt to utilize cenogram methodology (both qualitative and quantitative) to consider mammalian communities from fve early to late Eocene localities across the globe (i.e., Polecat Bench, Bighorn Basin, North America; Abbey Wood, Blackheath Formation, UK; Cambay Shale, Cambay Basin, India; Wutu Formation, Wutu Basin, China; Pondaung Formation, Myanmar) so as to provide a comparative palaeohabitat framework. It is also a frst attempt to examine the palaeohabitat of an extinct mammalian community (i.e., from Cambay Shale) in India utilizing the cenogram approach. In addition, seven extinct middle-Miocene communities (Laogou, Linxia Basin, China; Estación Imperial, Spain; Paseo de las Acacias, Spain; Arroyo del Olivar-Puente de Vallecas, Spain; Somo-saguas, Spain; Paracuellos 5, Spain; Paracuellos 3, Spain) have also been considered, in order to provide a global perspective to the climatic inferences in a temporal context. The majority of statistical calculations for Paleogene communities expose forested and humid conditions, excluding the Cambay Shale mammalian community of India. A hidden diversity within the medium to large body-size category of mammals (disguising the mammal biodiversity expected in tropical forested habitats) from Cambay Shale (western India) is a plausible cause of digression in the results. This is refected in the histograms showing relationships between proportions of mammal species in various body-mass categories. Furthermore, the results show that Neogene mammalian communities were sustained in comparatively open habitats. Diferences between occidental European and Asian localities in the canopy and humidity of the Neogene environments are also refected in our analyses.El presente estudio trata de emplear (tanto cualitativa como cuantitativamente) la metodología basada en el estudio de los cenogramas asociados a las comunidades de mamíferos presentes en cinco localidades fósiles del Eoceno inferior a superior (i.e., Polecat Bench, Cuenca de Bighorn, Norte America Abbey Wood, Formación Blackheath, Reino Unido Cambay Shale, Cuenca de Cambay, India Wutu Formation, Cuenca de Wutu, China Formación Pondaung, Myanmar), para establecer un marco comparativo paleoambiental entre ellas. Este trabajo es una primera aproximación para descifrar el paleohábitat de una comunidad de mamíferos extintos (i.e. de Cambay Shale) de la India, mediante el uso de la técnica de los cenogramas. Además, siete comunidades extintas del Mioceno medio, (Laogou, Cuenca de Linxia, China Estación Imperial, España Paseo de las Acacias, España Arroyo del Olivar-Puente de Vallecas, España Somosaguas, España Paracuellos 5, España Paracuellos 3, España) fueron incluidas en los análisis, dando así un contexto global y evolutivo a la inferencia climática del presente trabajo. En general, el análisis estadístico de los datos sugiere que las comunidades de mamíferos del Paleógeno habitaban generalmente en bosques tropicales a subtropicales, a excepción de la comunidad de mamíferos en Cambay Shale en India. Nuestros resultados refejan una diversidad oculta entre las especies de tamaño medio a grande en la comunidad de mamíferos de Cambay Shale, que parece afectar a la estructura de la comunidad, ocultando la biodiversidad de mamíferos presenten ambientes tropicales boscosos. Esto queda refejado en los histogramas que muestran el porcentaje de especies dentro de cada categoría de tamaño corporal. Así mismo, nuestros resultados también muestran que las comunidades del Neógeno ocupaban ambientes forestales más abiertos o sabanas. Además, nuestros resultados también arrojan diferencias en el grado de forestalidad y humedad entre las localidades Neógenas de la Europa occidental y las asiáticas.Ministerio de Educación, Ciencia e InnovaciónDepto. de Didáctica de las Ciencias Experimentales , Sociales y MatemáticasFac. de EducaciónTRUEpu

    Creodont and condylarth from Cambay Shale (early Eocene, ~55-54 Ma), Vastan Lignite Mine, Gujarat, western India

    No full text
    This paper describes two new mammalian taxa from the basal Eocene Cambay Shale deposits of the Vastan Lignite Mine, Gujarat, western India. One of these, a hyaenodontid creodont, pertains to a new taxon based on several dentaries (Indohyaenodon raoi n. gen. & n. sp.), and the other is an unnamed condylarth, possibly an arctocyonid, with a tribosphenic, bunodont upper molar morphology. The new finds augment the diversity of the Vastan mammal fauna significantly

    Development of cenogram technique over the past six decades with some insights into the varied habitats occupied by diverse mammalian communities across Spain, China, and India transiting the middle miocene climatic optimum

    No full text
    Referencias bibliográficas: • Aiglsstorfer M, Bocherens H, Bӧhme M (2014) Large mammal ecology in the late middle Miocene Gratkorn locality (Austria). Palaeodivers Palaeoenviron 94:189–213. https://doi.org/10.1007/s12549-013-0145-5 • Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733 • Anderson JF, Hall-Martin A, Russell DA (1985) Long-bone circumference and weight in mammals, birds and dinosaurs. J Zool 207:53–61 • Andersson K (2004) Predicting carnivoran body mass from a weight-bearing joint. J Zool 262:161–172 • Barry JC, Morgan ME, Flynn LJ, Pilbeam D, Behrensmeyer AK, Raza SM, Khan IA, Badgley C, Hicks J, Kelley J (2002) Faunal and environmental change in the Late Miocene Siwaliks of northern Pakistan. Paleobiology 28(S2):1–71 • Becker D, Tissier J (2019) Rhinocerotidae from the early middle Miocene locality Gračanica (Bugojno Basin, Bosnia-Herzegovina). Palaeobiodivers Palaeoenviron. https://doi.org/10.1007/s12549-018-0352-1 • Bernor RL, Fessaha N (2000) Evolution of late Miocene Hungarian Suinae (Artiodactyla, Suidae). Carolina 58:83–92 • Bhandari A, Kay RF, Williams BA, Tiwari BN, Bajpai S, Hieronymus T (2018) First record of the Miocene hominoid Sivapithecus from Kutch, Gujarat State, western India. PLoS One 13:e0206314. https://doi.org/10.1371/journal.pone.0206314 • Bown TM, Holroyd PA, Rose KD (1994) Mammal extinctions, body size, and paleotemperature. Proc Natl Acad Sci USA 91:10403–10406 • Christiansen P (2004) Body size in proboscideans, with notes on elephant metabolism. Zool J Linnean Soc 140:523–549 • Costeur L (2005) Cenogram analysis of the Rudabánya mammalian community: palaeoenvironmental interpretations. Palaeontogr Ital 90:303–307 • Creighton GK (1980) Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J Zool (Lond) 191:435–443 • Croft DA (2001) Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Divers Distrib 7:271–287. https://doi.org/10.1046/j.1366-9516.2001.00117.x • Dagosto M, Terranova CJ (1992) Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables. Int J Primatol 13(3):307–343 • Damuth J, MacFadden BJ (1990) Introduction: body size and its estimation. In: Damuth J, MacFadden BJ (eds) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge, UK, pp 1–10 • DeSilva JM, Morgan ME, Barry JC, Pilbeam D (2010) A hominoid distal tibia from the Miocene of Pakistan. J Hum Evol 58:147–154 • Domingo L, Koch PL, Hernández Fernández M, Fox DL, Domingo MS, Alberdi MT (2013) Late Neogene and early quaternary paleoenvironmental and paleoclimatic conditions in southwestern Europe: isotopic analyses on mammalian taxa. PLoS One 8(5):e63739. https://doi.org/10.1371/journal.pone.0063739 • Egi N, Takai M, Shigehara N, Tsubamoto T (2004) Body mass estimates for Eocene eosimiid and amphipithecid primates using prosimians and anthropoid scaling models. Int J Primatol 25:211–236 • Ferreira GS, Bandyopadhyay S, Joyce WG (2018) A taxonomic reassessment of Piramys auffenbergi, a neglected turtle from the late Miocene of Piram Island, Gujarat, India. PeerJ. https://doi.org/10.7717/peerj.5938 • Fleagle JG (1978) Size distributions of living and fossil primate faunas. Paleobiology 4:67–76 • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555 • Flynn LJ, Barry JC, Morgan ME, Pilbeam D, Jacobs LL, Lindsay EH (1995) Neogene Siwalik mammalian lineages: species longevities, rates of change, and modes of speciation. In: Badgley C, Behrensmeyer AK (eds) Long records of continental ecosystems. Palaeogeography, palaeoclimatology, palaeoecology, vol 115. Cambridge University Press, Cambridge, pp 249–264 • García Yelo BA, Gómez Cano AR, Cantalapiedra JL, Alcalde GM, Sanisidro O, Oliver A, Hernández-Ballarín V, López-Guerrero P, Fraile S, Hernández-Fernández M (2014) Palaeoenvironmental analysis of the Aragonian (middle Miocene) mammalian faunas from the Madrid Basin based on body-size structure. J Iber Geol 40(1):129–140 • Gilbert CC, Patel BA, Singh NP, Campisano CJ, Fleagle JG, Rust KL, Patnaik R (2017) New sivaladapid primate from lower Siwalik deposits surrounding Ramnagar (Jammu and Kashmir State), India. J Hum Evol 102:21–41. https://doi.org/10.1016/j.jhevol.2016.10.001 • Gilbert CC, Ortiz A, Pugh KD, Campisano CJ, Patel BA, Singh NP, Fleagle JG, Patnaik R (2020) New middle Miocene ape (primates: hylobatidae) from Ramnagar, India fills major gaps in the hominoid fossil record. Proc R Soc B 287. https://doi.org/10.1098/rspb.2020.1655 • Gingerich PD (1989) New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage, vol 28. University of Michigan, Ann Arbor, pp 1–97 • Gingerich PD (1990) Prediction of body mass in mammalian species from long bone lengths and diameters. Contrib Mus Paleontol Univ Mich 28(4):79–92 • Gingerich PD, Smith BH, Rosenberg K (1982) Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am J Phys Anthropol 58:81–100 • Gӧhlich UB (2010) The Proboscidea (Mammalia) from the Miocene of Sandelzhaunsen (southern Germany). Paläontol Z 84:163–204. https://doi.org/10.1007/s12542-010-0053-1 • Gómez Cano AR, García Yelo BA, Hernández Fernández M (2006) Cenogramas, análisis bioclimático y muestreo en faunas de mamíferos: implicacion espara la aplicación de métodos de análisis paleoecológico. Estud Geol 62:135–144 • Grabowski M, Jungers WL (2017) Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes. Nat Commun. https://doi.org/10.1038/s41467-017-00997-4 • Guzmán JA (2018) Palaeobiology of tragulids (Mammalia: Artiodactyla: Ruminantia). Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München, pp 1–230 • Harris EB, Kohn MJ, Strömberg CAE (2020) Stable isotope compositions of herbivore teeth indicate climatic stability leading into the mid-Miocene climatic optimum, in Idaho, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 546:109610. https://doi.org/10.1016/j.palaeo.2020.109610 • Hernández Fernández M, Alberdi MT, Azanza B, Montoya P, Morales J, Nieto M, Peláez-Campomanes P (2006) Identification problems of arid environments in the neogene–quaternary mammal record of Spain. J Arid Environ 66:585–608 • Holbourn A, Kuhnt W, Kochhann KGD, Andersen N, Sebastian Meier KJ (2015) Global perturbation of the carbon cycle at the onset of the Miocene climatic optimum. Geology 43:123–126. https://doi.org/10.1130/G36317.1 • Kapur VV, Pickford M, Chauhan G, Thakkar MG (2019) A middle Miocene (~14 Ma) vertebrate assemblage from Palasava, Rapar Taluka, Kutch (Kachchh) district, Gujarat State, western India. Hist Biol. https://doi.org/10.1080/08912963.2019.1648451 • Kapur VV, GarcíaYelo BA, Morthekai P (2020) Cenogram analyses as habitat indicators for the paleogene-neogene mammalian communities across the globe, with an emphasis on the early Eocene Cambay Shale mammalian community from India. J Iber Geol 46(3):291–310. https://doi.org/10.1007/s41513-020-00131-2 • Kay RF (1975) The functional adaptations of primate molar teeth. Am J Phys Anthropol 43:195–216 • Larramendi A (2016) Shoulder height, body mass, and shape of proboscideans. Acta Palaeontol Pol 61(3):537–574 • Legendre S (1986) Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata 16:191–212 • Legendre S (1987) Les communautés de mammifères d'Europe occidentale de ‘Eocene supérieur et Oligocène: structures et milieux. Münchner Geowissenschaft liche Abhandlungen A10:301–312 • Legendre S (1989) Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentatructures, milieu et évolution. Münchner Geowissenschaft liche Abhandlungen A16:1–110 • Legendre S, Roth C (1988) Correlation of carnassial tooth size and body weight in recent carnivores (mammalia). Hist Biol 1:85–98 • Liu L-P (2003) The Chinese fossil Suoidea: systematics, evolution, and paleoecology. Yliopistopaino, Helsinki, pp 1–41 • Martinez JN, Sudre J (1995) The astragalus of paleogene artiodactyls: comparative morphology, variability and prediction of body mass. Lethaia 28:197–209 • Mendoza M, Janis CM, Palmqvist P (2006) Estimating the body mass of extinct ungulates: a study on the use of multiple regression. J Zool 270:90–101 • Methner K, Campani M, Fiebig J, Löffler N, Kempf O, Mulch A (2020) Middle Miocene long-term continental temperature change in and out of pace with marine climate records. Sci Rep 10:7989. https://doi.org/10.1038/s41598-020-64743-5 • Millien V, Bovy H (2010) When teeth and bones disagree: body mass estimation of a giant extinct rodent. J Mammal 91(1):11–18 • Myers TJ (2001) Prediction of marsupial body mass. Aust J Zool 49:99–118 • Nieto M, Rodríguez J (2003) Inferencia paleoecológica en mamíferos cenozoicos: limitaciones metodológicas. Coloquios de Paleontología 1:459–474 • Parmar V, Prasad GVR, Norboo R (2018) Middle Miocene small mammals from the Siwalik Group of Northwestern India. J Asian Earth Sci 162:84–92. https://doi.org/10.1016/j.jseaes.2017.11.023 • Patnaik R, Sharma KM, Mohan L, Williams BA, Kay RF, Chatrath P (2014) Additional vertebrate remains from the early Miocene of Kutch, Gujarat. Spec Publ Paleontol Soc India 5:335–351 • Prasad KN (1974) The vertebrate fauna from Piram Island, Gujarat, India. Mem Geol Surv India 1974:1–22 • Retallack GJ, Bajpai S, Liu X, Kapur VV, Pandey SK (2018) Advent of strong south Asian monsoon by 20 million years ago. J Geol 126:1–24 • Rodríguez J (1999) Use of cenograms in mammalian palaeocology - a critical review. Lethaia 32:331–347 • Sahni A, Mishra VP (1975) Lower tertiary vertebrates from western India. Monogr Palaeontol Soc India 3:1–48 • Sehgal RK (2013) Revised mammalian biostratigraphy of the lower Siwalik sediments of Ramnagar (J. & K.), India and its faunal correlation. J Palaeontol Soc India 58(1):87–92 • Sehgal RK, Patnaik R (2012) New muroid rodent and Sivapithecus dental remains from the lower Siwalik deposits of Ramnagar (J & K, India): age implication. Quat Int 269:69–73 • Singh NP, Jukar AD, Patnaik R, Sharma MK, Singh NA, Singh YP (2020) The first specimen of Deinotherium indicum (Mammalia, Proboscidea, Deinotheriidae) from the late Miocene of Kutch, India. J Paleontol. https://doi.org/10.1017/jpa.2020.3 • Travouillon KJ, Legendre S (2009) Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeogr Palaeoclimatol Palaeoecol 272:69–84 • Travouillon KJ, Legendre S, Archer M, Hand SA (2009) Palaeoecological analyses of Riversleigh’s oligo-Miocene sites: implications for oligo-Miocene climate change in Australia. Palaeogeogr Palaeoclimatol Palaeoecol 276:24–37 • Tsubamoto T, Egi N, Takai M, Sein C, Maung M (2005) Middle Eocene ungulate mammals from Myanmar: a review with description of new specimens. Acta Palaeontol Pol 50(1):117–138 • Valverde JA (1964) Remarquessur la structure et l'évolution des communautés de vertebras terrestres. 1. Structure d'une communauté 2, Rapport entre prédateurs et proies. La Terre et la Vie 111:121–154 • Valverde JA (1967) Estructura de unacommunidad de vertebra dos terrestres. Monografías de la Estación Biológica de Doñana 1:1–129 • You Y, Huber M, Müller RD, Poulsen CJ, Ribbe J (2009) Simulation of the middle Miocene climate optimum. Geophys Res Lett 36. https://doi.org/10.1029/2008GL036571 • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. https://doi.org/10.1126/science.1059412 • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283. https://doi.org/10.1038/nature06588The climatic evolution of the Neogene, with long-term cooling disrupted by the Middle Miocene Climatic Optimum (MMCO; ~17–14.75 Ma), arises as a suitable baseline to analyze the effects of these transcendent climatic changes on the mammalian community structures. The present investigation is an attempt to examine the palaeohabitat of a Neogene (Middle Miocene: ~15–11.5 Ma) geographically distant (i.e., from Spain, China, and India) extinct mammalian communities utilizing the cenogram approach (in both qualitative and quantitative framework). The detailed statistical analyses (presented herein) incorporating a total of eight mammalian communities allows us to infer predominance of Tropical Deciduous Forest environments between ~15 and ~11.5 Ma interval, with several pulses of distinctive aridity experienced by some communities thriving within the Iberian region. On the contrary, stable forested conditions were witnessed by the middle Miocene communities of Asia [i.e., the ~11.5 million-year-old mammalian community of Laogou (China), and the ~13.5 million-year-old mammalian community of Ramnagar (north India)]. Our present investigation also infers that additional mammalian remains (particularly of body mass of <35 kg) are warranted to decipher the habitat (based on cenogram approach) of the Middle Miocene (~13 Ma) mammalian community of Kalagarh (Himalayan Foreland Basin, north India) and the Middle Miocene (~14 Ma) mammalian community of Palasava (Kutch Basin, western India). Nonetheless, the Cenogram technique (being continuously developed over the past six decades) may become an important tool to decipher any habitat change(s) of western India’s mammalian communities considering renewed palaeontological efforts within the Neogene of the region.Ministerio de Educación, Ciencia e InvestigaciónDepto. de Didáctica de las Ciencias Experimentales , Sociales y MatemáticasFac. de EducaciónTRUEpu

    New early eocene primate (Mammalia) from Vastan lignite Mine, District Surat (Gujarat), western India

    No full text
    We describe a primate dentary pertaining to a new taxon (Suratius robustus n. gen. &#38; n. sp., cf. Omomyidae) from the early Eocene Cambay Shale deposits of the Vastan Lignite Mine, Gujarat, westem India

    The oldest Asian record of Anthropoidea

    Get PDF
    Undisputed anthropoids appear in the fossil record of Africa and Asia by the middle Eocene, about 45 Ma. Here, we report the discovery of an early Eocene eosimiid anthropoid primate from India, named Anthrasimias, that extends the Asian fossil record of anthropoids by 9–10 million years. A phylogenetic analysis of 75 taxa and 343 characters of the skull, postcranium, and dentition of Anthrasimias and living and fossil primates indicates the basal placement of Anthrasimias among eosimiids, confirms the anthropoid status of Eosimiidae, and suggests that crown haplorhines (tarsiers and monkeys) are the sister clade of Omomyoidea of the Eocene, not nested within an omomyoid clade. Co-occurence of Anthropoidea, Omomyoidea, and Adapoidea makes it evident that peninsular India was an important center for the diversification of primates of modern aspect (euprimates) in the early Eocene. Adaptive reconstructions indicate that early anthropoids were mouse–lemur-sized (≈75 grams) and consumed a mixed diet of fruit and insects. Eosimiids bear little adaptive resemblance to later Eocene-early Oligocene African Anthropoidea

    Early Eocene land mammals from the Vastan Lignite Mine, District Surat (Gujarat), western India

    No full text
    We report the discovery of an early Eocene (middle Ypresian, approximately 52 Ma) land mammal fauna from sediments associated with the lignite deposits of Vastan Mine, District Surat, Gujarat. The fauna represents the oldest known Cenozoic land mammals from India. As presently identified, the assemblage comprises a total of 12 species, all new, representing perissodactyls (4 species placed in a new family); proteutherians (2 species representing two families); apatotherians (one species); insectivores (2 species, one belonging to a new family); artiodactyls (one species representing a new genus); rodents and bats (one species each). This is a largely endemic fauna with some holarctic elements. A detailed study of the assemblage and its implications is in progress and is expected to provide significant insight into our understanding of mammalian dispersal and India's evolving biogeographic affinities in the context of India-Asia collision

    New early Eocene cambaythere (Perissodactyla, Mammalia) from the Vastan Lignite Mine (Gujarat, India) and an evaluation of cambaythere relationships

    No full text
    A new collection of cambaytheres (Perissodactyla: Mammalia) from the early Eocene (Ypresian, ca. 52 Ma) deposits at the Vastan Lignite Mine, Gujarat, is described. The collection comprises both lower and upper dentitions, postcranials, and the rostrum of a new taxon (Kalitherium marinus n. gen. and n. sp.) from a higher stratigraphic level in the Vastan Lignite Mine. These specimens expand our knowledge of the cambaythere anatomy and also help to confirm their perissodactyl affinities
    corecore