37 research outputs found
Pharmaceutical cost and multimorbidity with type 2 diabetes mellitus using electronic health record data
© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.[EN] Background: The objective of the study is to estimate the frequency of multimorbidity in type 2 diabetes patients
classified by health statuses in a European region and to determine the impact on pharmaceutical expenditure.
Methods: Cross-sectional study of the inhabitants of a southeastern European region with a population of
5,150,054, using data extracted from Electronic Health Records for 2012. 491,854 diabetic individuals were identified
and selected through clinical codes, Clinical Risk Groups and diabetes treatment and/or blood glucose reagent
strips. Patients with type 1 diabetes and gestational diabetes were excluded. All measurements were obtained at
individual level. The prevalence of common chronic diseases and co-occurrence of diseases was established using
factorial analysis.
Results: The estimated prevalence of diabetes was 9.6 %, with nearly 70 % of diabetic patients suffering from more
than two comorbidities. The most frequent of these was hypertension, which for the groups of patients in Clinical
Risk Groups (CRG) 6 and 7 was 84.3 % and 97.1 % respectively. Regarding age, elderly patients have more
probability of suffering complications than younger people. Moreover, women suffer complications more frequently
than men, except for retinopathy, which is more common in males. The highest use of insulins, oral antidiabetics
(OAD) and combinations was found in diabetic patients who also suffered cardiovascular disease and neoplasms.
The average cost for insulin was 153€ and that of OADs 306€. Regarding total pharmaceutical cost, the greatest
consumers were patients with comorbidities of respiratory illness and neoplasms, with respective average costs of
2,034.2€ and 1,886.9€.
Conclusions: Diabetes is characterized by the co-occurrence of other diseases, which has implications for disease
management and leads to a considerable increase in consumption of medicines for this pathology and, as such,
pharmaceutical expenditure.This study was financed by a grant from the Fondo de Investigaciones de la Seguridad Social Instituto de Salud Carlos III, the Spanish Ministry of Health (FIS PI12/0037).Sancho Mestre, C.; Vivas Consuelo, DJJ.; Alvis, L.; Romero, M.; Usó Talamantes, R.; Caballer Tarazona, V. (2016). Pharmaceutical cost and multimorbidity with type 2 diabetes mellitus using electronic health record data. BMC Health Services Research. 16(394):1-8. https://doi.org/10.1186/s12913-016-1649-2S1816394Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22079683Soriguer F, Goday A, Bosch-Comas A, Bordiu E, Calle-Pascual A, Carmena R, et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: the [email protected] Study. Diabetologia. 2012;55:88–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21987347WHO | Rio Political Declaration on Social Determinants of Health. WHO. World Health Organization; 2011. Available from: http://www.who.int/sdhconference/declaration/Rio_political_declaration.pdf?ua=1Fortin M, Soubhi H, Hudon C, Bayliss EA, van den Akker M. Multimorbidity’s many challenges. BMJ. 2007;334:1016–7. BMJ Group [cited 2016 Aug 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17510108Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann Fam Med. 2009;7:357–63. [cited 2016 Aug 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19597174Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol. 2004;57:1288–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15617955Glynn LG, Valderas JM, Healy P, Burke E, Newell J, Gillespie P, et al. The prevalence of multimorbidity in primary care and its effect on health care utilization and cost. Fam Pract. 2011;28:516–23. [Internet]. 2011 [cited 2016 Aug 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21436204Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380:37–43. [cited 2014 Nov 5] Available from: http://www.ncbi.nlm.nih.gov/pubmed/22579043Holden L, Scuffham PA, Hilton MF, Muspratt A, Ng SK, Whiteford HA. Patterns of multimorbidity in working Australians. Popul Heal Metr. 2011;9:15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21635787Starfield B. Threads and yarns: weaving the tapestry of comorbidity. Ann Fam Med. 2006;4:101–3. [cited 2016 Aug 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16569711Abdul-Rahim HF, Holmboe-Ottesen G, Stene LCM, Husseini A, Giacaman R, Jervell J, et al. Obesity in a rural and an urban Palestinian West Bank population. Int J Obes. 2003;27:140–6. Available from: http://dx.doi.org/10.1038/sj.ijo.0802160Boutayeb A, Boutayeb S, Boutayeb W. Multi-morbidity of non communicable diseases and equity in WHO Eastern Mediterranean countries. Int J Equity Heal. 2013;12:60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23961989Teljeur C, Smith SM, Paul G, Kelly A, O’Dowd T. Multimorbidity in a cohort of patients with type 2 diabetes. Eur J Gen Pract. 2013;19:17–22. Available from: http://informahealthcare.com/doi/abs/10.3109/13814788.2012.714768 , http://www.ncbi.nlm.nih.gov/pubmed/23432037Hughes JS, Averill RF, Eisenhandler J, Goldfield NI, Muldoon J, Neff JM, et al. Clinical Risk Groups (CRGs): a classification system for risk-adjusted capitation-based payment and health care management. Med Care. 2004;42:81–90. [cited 2016 Feb 29]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14713742Vivas-Consuelo D, Alvis-Estrada L, Uso-Talamantes R, Caballer-Tarazona V, Buigues-Pastor L, Sancho-Mestre C. Multimorbidity Pharmaceutical Cost of Diabetes Mellitus. Value in Health. 2014;17:A341–2. Elsevier [cited 2016 Apr 21]. Available from: http://www.sciencedirect.com/science/article/pii/S1098301514026102Inoriza JM, Pérez M, Cols M, Sánchez I, Carreras M. Análisis de la población diabética de una comarca : perfil de morbilidad, utilización de recursos, complicaciones y control metabólico. Aten Primaria. 2016;45. Available from: http://www.sciencedirect.com/science/article/pii/S0212656713001340Vivas-Consuelo D, Usó-Talamantes R, Trillo-Mata JL, Caballer-Tarazona M, Barrachina-Martínez I, Buigues-Pastor L. Predictability of pharmaceutical spending in primary health services using Clinical Risk Groups. Health Policy. 2014;116:188–95. Available from: http://www.sciencedirect.com/science/article/pii/S0168851014000256Kho AN, Hayes MG, Rasmussen-Torvik L, Pacheco JA, Thompson WK, Armstrong LL, et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc. 2016;19:212–8. [cited 2016 Feb 18]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3277617&tool=pmcentrez&rendertype=abstractPrados-Torres A, Poblador-Plou B, Calderón-Larrañaga A, Gimeno-Feliu LA, González-Rubio F, Poncel-Falcó A, et al. Multimorbidity patterns in primary care: interactions among chronic diseases using factor analysis. PLoS One. 2012;7:e32190. Public Library of Science [cited 2016 Apr 21]. Available from: http://dx.doi.org/10.1371/journal.pone.0032190Islam MM, Valderas JM, Yen L, Dawda P, Jowsey T, McRae IS. Multimorbidity and comorbidity of chronic diseases among the senior Australians: prevalence and patterns. PLoS One. 2014;9:e83783. Public Library of Science [cited 2016 Mar 25]. Available from: http://dx.doi.org/10.1371/journal.pone.0083783Fortin M, Bravo G, Hudon C, Lapointe L, Dubois MF, Almirall J. Psychological distress and multimorbidity in primary care. Ann Fam Med. 2006;4:417–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17003141Nuttall M, van der Meulen J, Emberton M. Charlson scores based on ICD-10 administrative data were valid in assessing comorbidity in patients undergoing urological cancer surgery. J Clin Epidemiol. 2006;59:265–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16488357Klompas M, Eggleston E, McVetta J, Lazarus R, Li L, Platt R. Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data. Diabetes Care. 2013;36:914–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23193215Alonso-Moran E, Orueta JF, Fraile Esteban JI, Arteagoitia Axpe JM, Luz Marques Gonzalez M, Toro Polanco N, et al. The prevalence of diabetes-related complications and multimorbidity in the population with type 2 diabetes mellitus in the Basque Country. BMC Public Health. 2014;14. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197247/Pantalone KM, Hobbs TM, Wells BJ, Kong SX, Kattan MW, Bouchard J, et al. Clinical characteristics, complications, comorbidities and treatment patterns among patients with type 2 diabetes mellitus in a large integrated health system. BMJ open diabetes Res Care. 2015;3:e000093. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4513350&tool=pmcentrez&rendertype=abstractAlonso-Moran E, Satylganova A, Orueta JF, Nuno-Solinis R. Prevalence of depression in adults with type 2 diabetes in the Basque Country: relationship with glycaemic control and health care costs. BMC Public Health. 2014;14. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-769Kilzieh N, Rastam S, Maziak W, Ward KD. Comorbidity of depression with chronic diseases: a population-based study in Aleppo, Syria. Int J Psychiatry Med. 2008;38:169–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18724568Almawi W, Tamim H, Al-Sayed N, Arekat MR, Al-Khateeb GM, Baqer A, et al. Association of comorbid depression, anxiety, and stress disorders with Type 2 diabetes in Bahrain, a country with a very high prevalence of Type 2 diabetes. J Endocrinol Invest. 2008;31:1020–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19169060Giralt Muiña P, Gutiérrez Ávila G, Ballester Herrera MJ, Botella Romero F, Angulo Donado JJ. Prevalencia de diabetes y diabetes oculta en adultos de Castilla-La Mancha. TITLEREVISTA. 2011;137:484–90. Available from: http://zl.elsevier.es/es/revista/medicina-clinica-2/prevalencia-diabetes-diabetes-oculta-adultos-castilla-la-mancha-90028329-originales-2011Mata-Cases M, Roura-Olmeda P, Berengué-Iglesias M, Birulés-Pons M, Mundet-Tuduri X, Franch-Nadal J, et al. Fifteen years of continuous improvement of quality care of type 2 diabetes mellitus in primary care in Catalonia, Spain. Int J Clin Pract. 2012;66:289–98. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3584513&tool=pmcentrez&rendertype=abstractEgede LE, Gebregziabher M, Zhao Y, Dismuke CE, Walker RJ, Hunt KJ, et al. Differential Impact of Mental Health. 2015;21:535–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26295353Huber CA, Diem P, Schwenkglenks M, Rapold R, Reich O. Estimating the prevalence of comorbid conditions and their effect on health care costs in patients with diabetes mellitus in Switzerland. Diabetes Metab Syndr Obes. 2014;7:455–65. Dove Press [cited 2016 Aug 4]. Available from: https://www.dovepress.com/estimating-the-prevalence-of-comorbid-conditions-and-their-effect-on-h-peer-reviewed-article-DMS
Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models
Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Monoclonal auto-antibodies and sera of autoimmune patients react with Plasmodium falciparum and inhibit its in vitro growth
The relationship between autoimmunity and malaria is not well understood. To determine whether autoimmune responses have a protective role during malaria, we studied the pattern of reactivity to plasmodial antigens of sera from 93 patients with 14 different autoimmune diseases (AID) who were not previously exposed to malaria. Sera from patients with 13 different AID reacted against Plasmodium falciparum by indirect fluorescent antibody test with frequencies varying from 33-100%. In addition, sera from 37 AID patients were tested for reactivity against Plasmodium yoelii 17XNL and the asexual blood stage forms of three different P. falciparum strains. In general, the frequency of reactive sera was higher against young trophozoites than schizonts (p < 0.05 for 2 strains), indicating that the antigenic determinants targeted by the tested AID sera might be more highly expressed by the former stage. The ability of monoclonal auto-antibodies (auto-Ab) to inhibit P. falciparum growth in vitro was also tested. Thirteen of the 18 monoclonal auto-Ab tested (72%), but none of the control monoclonal antibodies, inhibited parasite growth, in some cases by greater than 40%. We conclude that autoimmune responses mediated by auto-Ab may present anti-plasmodial activity
Synthesis and characterization of TM-doped CuO (TM = Fe, Ni)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Polycrystalline Cu1-xTMxO samples (x = 0 and 0.06; TM = Ni2+ and Fe3+) were grown using a co-precipitation method. The structural and magnetic properties were investigated by means of temperature dependent magnetic susceptibility and room temperature X-ray powder diffraction (XRPD). The XRPD analyses of the samples reveal the formation of single phase with structure isomorphous to the CuO. Interestingly, T-dependent magnetization shows the reduction of Neel temperature, T-N, from 213 K in the copper oxide to 70 K in the Fe-doped sample (x = 0.06). Because in the Ni-doped samples TN seems to be unaffected, this decrease in TN is believed to be due to the different electronic structure of the dopant. The ferromagnetic behavior observed at room temperature in all samples can be related to both the level of oxygen (excess or vacancy) of our samples and to the difference in the magnetic structure of the dopant. (c) 2008 Elsevier B.V. All rights reserved.35442-4448304832Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays
The size effects on magnetic properties of nanowires arrays were studied varying the nanowires diameter and maintaining the same periodicity among them, for two different nominal compositions of Co and Ni in the alloy form. The competition among magnetocrystalline and shape anisotropies changes drastically from smallest to biggest diameters altering the easy axis direction. In the case of 75% of Co in alloy, experimental values of the effective anisotropy constant (K-eff) vary from positive to negative depending on the diameter, which means a reversal of the easy axis direction. For 50% of Co the shape anisotropy dominates over the magnetocrystalline for all studied diameters. (c) 2012 Elsevier B.V. All rights reserved.3242236793682International Iberian Nanotechnology Laboratory (INL