2 research outputs found

    Safety of magnetic resonance imaging scanning in patients with cardiac resynchronization therapy–defibrillators incorporating quadripolar left ventricular leads

    Get PDF
    © 2020 The Authors Background: Magnetic resonance imaging (MRI) scanning of magnetic resonance (MR)-conditional cardiac implantable cardioverter-defibrillators (ICDs) can be performed safely following specific protocols. MRI safety with cardiac resynchronization therapy–defibrillators (CRT-Ds) incorporating quadripolar left ventricular (LV) leads is less clear. Objective: The purpose of this study was to evaluate the safety and effectiveness of ICDs and CRT-D systems with quadripolar LV leads after an MRI scan. Methods: The ENABLE MRI Study included 230 subjects implanted with a Boston Scientific ImageReady ICD (n = 39) or CRT-D (n = 191) incorporating quadripolar LV leads undergoing nondiagnostic 1.5-T MRI scans (lumbar and thoracic spine imaging) a minimum of 6 weeks postimplant. Pacing capture thresholds (PCTs), sensing amplitudes (SAs), and impedances were measured before and 1 month post-MRI using the same programmed LV pacing vectors. The ability to sense/treat ventricular fibrillation (VF) was assessed in a subset of patients. Results: A total of 159 patients completed a protocol-required MRI scan (MRI Protection Mode turned on) with no scan-related complications. All right ventricular (RV) and left LV PCT and SA effectiveness endpoints were met: RV PCT 99% (145/146 patients), LV PCT 100% (120/120), RV SA 99% (145/146), and LV SA 98% (116/118). In no instances did MRI result in a change in pacing vector or lead revision. All episodes of VF were appropriately sensed and treated. Conclusion: This first evaluation of predominantly CRT-D systems with quadripolar LV leads undergoing 1.5-T MRI confirmed that scanning was safe with no significant changes in RV/LV PCT, SA, programmed vectors, and VF treatment, thus suggesting that MRI in patients having a device with quadripolar leads can be performed without negative impact on CRT delivery

    Safety of magnetic resonance imaging scanning in patients with cardiac resynchronization therapy–defibrillators incorporating quadripolar left ventricular leads

    No full text
    Background: Magnetic resonance imaging (MRI) scanning of magnetic resonance (MR)-conditional cardiac implantable cardioverter-defibrillators (ICDs) can be performed safely following specific protocols. MRI safety with cardiac resynchronization therapy–defibrillators (CRT-Ds) incorporating quadripolar left ventricular (LV) leads is less clear. Objective: The purpose of this study was to evaluate the safety and effectiveness of ICDs and CRT-D systems with quadripolar LV leads after an MRI scan. Methods: The ENABLE MRI Study included 230 subjects implanted with a Boston Scientific ImageReady ICD (n = 39) or CRT-D (n = 191) incorporating quadripolar LV leads undergoing nondiagnostic 1.5-T MRI scans (lumbar and thoracic spine imaging) a minimum of 6 weeks postimplant. Pacing capture thresholds (PCTs), sensing amplitudes (SAs), and impedances were measured before and 1 month post-MRI using the same programmed LV pacing vectors. The ability to sense/treat ventricular fibrillation (VF) was assessed in a subset of patients. Results: A total of 159 patients completed a protocol-required MRI scan (MRI Protection Mode turned on) with no scan-related complications. All right ventricular (RV) and left LV PCT and SA effectiveness endpoints were met: RV PCT 99% (145/146 patients), LV PCT 100% (120/120), RV SA 99% (145/146), and LV SA 98% (116/118). In no instances did MRI result in a change in pacing vector or lead revision. All episodes of VF were appropriately sensed and treated. Conclusion: This first evaluation of predominantly CRT-D systems with quadripolar LV leads undergoing 1.5-T MRI confirmed that scanning was safe with no significant changes in RV/LV PCT, SA, programmed vectors, and VF treatment, thus suggesting that MRI in patients having a device with quadripolar leads can be performed without negative impact on CRT delivery
    corecore