586 research outputs found

    Structure, tritium depth profile and desorption from 'plasma-facing' beryllium materials of ITER-Like-Wall at JET

    Get PDF
    Tritium depth profile and its temperature programmed desorption rate were determined for selected samples cut out of beryllium tiles removed from the Joint European Torus vacuum vessel during the 2012 shut down. A beryllium dissolution method under controlled conditions was used to determine the tritium depth profile in the samples, whereas temperature programmed desorption experiments were performed to assess tritium release pattern. Released tritium was measured using a proportional gas flow detector. Prior to desorption and dissolution experiments, the plasma-facing surfaces of the samples were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. Experimental results revealed that > 95% of the tritium was localized in the top 30 –45 μm of the ‘plasma-facing’ surface, however, possible tritium presence up to 100 μm cannot be excluded. During tem- perature programmed desorption at 4.8 K/min in the flow of purge gas He + 0.1% H 2 the tritium release started below 475 K, the most intense release occurred at 725 –915 K and the degree of detritiation of > 91% can be obtained upon reaching 1075 K. The total tritium activity in the samples was in range of 2 –32 kilo Becquerel per square centimetre of the plasma-facing surface area.EURATOM 63305

    Tritium in plasma-facing components of JET with the ITER-Like-Wall

    Get PDF
    Publisher Copyright: © 2021 Institute of Physics Publishing. All rights reserved.The ITER-Like-Wall project has been carried out at the Joint European Torus (JET) to test plasma facing materials relevant to ITER. Materials being tested include both bulk metals (Be andW) and coatings. Tritium accumulation mechanisms and release properties depend both on the wall components, their location in the vacuum vessel, conditions of exposure to plasma and to the material itself. In this study, bulk beryllium limiter tiles, plasma-facing beryllium coated Inconel components from the main chamber, bulk tungsten and tungsten coated carbon fibre composite divertor tiles were analysed. A range of methods have been developed and applied in order to obtain a comprehensive overview on tritium retention and behaviour in different materials of plasma facing components (PFCs). Tritium content and chemical state were studied by the means of chemical or electrochemical dissolution methods and thermal desorption spectroscopy. Tritium distribution in the vacuum vessel and factors affecting its accumulation have been assessed and discussed.publishersversionPeer reviewe

    Magnetic bound states in the quarter-filled ladder system αNaV2O5\alpha'-NaV_{2}O_{5}}

    Full text link
    Raman scattering in the quarter-filled spin ladder system alpha'-NaV_2O_5 shows in the dimerized singlet ground state (TTSP=35KT \leq T_{SP}=35K) an unexpected sequence of three magnetic bound states. Our results suggest that the recently proposed mapping onto an effective spin chain for T>TSPT > T_{SP} has to be given up in favor of the full topology and exchange paths of a ladder in the dimerized phase for T<TSPT < T_{SP}. As the new ground state we propose a dynamic superposition of energetically nearly degenerate dimer configurations on the ladder.Comment: 5 pages, 4 figures, to be published in PRB, brief reports, Dec. 199

    Spin gap behavior and charge ordering in \alpha^{\prime}-NaV_2O_5 probed by light scattering

    Full text link
    We present a detailed analysis of light scattering experiments performed on the quarter-filled spin ladder compound α\alpha^\prime-NaV2_{2}O5_{5} for the temperature range 5 K\leT\le300 K. This system undergoes a phase transition into a singlet ground state at T=34 K accompanied by the formation of a super structure. For T\leq34 K several new modes were detected. Three of these modes are identified as magnetic bound states. Experimental evidence for charge ordering on the V sites is detected as an anomalous shift and splitting of a V-O vibration at 422 cm1^{-1} for temperatures above 34 K. The smooth and crossover-like onset of this ordering at TCO_{\rm CO}= 80 K is accompanied by pretransitional fluctuations both in magnetic and phononic Raman scattering. It resembles the effect of stripe order on the super structure intensities in La2_2NiO4+δ_{4+\delta}.Comment: 36 pages, 11 figures, accepted for publication in PRB (sept.99

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Overview of the JET ITER-like wall divertor

    Get PDF

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings

    Get PDF
    The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an HMode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm3^{-3} at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E×B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten

    Measuring fast ions in fusion plasmas with neutron diagnostics at JET

    Get PDF

    Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/ trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position ρt_{t}=0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile
    corecore