28 research outputs found

    Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients

    Get PDF
    Background: To quantify the association between effects of interventions on carotid intima-media thickness (cIMT) progression and their effects on cardiovascular disease (CVD) risk. Methods: We systematically collated data from randomized, controlled trials. cIMT was assessed as the mean value at the common-carotid-artery; if unavailable, the maximum value at the common-carotid-artery or other cIMT measures were used. The primary outcome was a combined CVD end point defined as myocardial infarction, stroke, revascularization procedures, or fatal CVD. We estimated intervention effects on cIMT progression and incident CVD for each trial, before relating the 2 using a Bayesian meta-regression approach. Results: We analyzed data of 119 randomized, controlled trials involving 100 667 patients (mean age 62 years, 42% female). Over an average follow-up of 3.7 years, 12 038 patients developed the combined CVD end point. Across all interventions, each 10 μm/y reduction of cIMT progression resulted in a relative risk for CVD of 0.91 (95% Credible Interval, 0.87–0.94), with an additional relative risk for CVD of 0.92 (0.87–0.97) being achieved independent of cIMT progression. Taken together, we estimated that interventions reducing cIMT progression by 10, 20, 30, or 40 μm/y would yield relative risks of 0.84 (0.75–0.93), 0.76 (0.67–0.85), 0.69 (0.59–0.79), or 0.63 (0.52–0.74), respectively. Results were similar when grouping trials by type of intervention, time of conduct, time to ultrasound follow-up, availability of individual-participant data, primary versus secondary prevention trials, type of cIMT measurement, and proportion of female patients. Conclusions: The extent of intervention effects on cIMT progression predicted the degree of CVD risk reduction. This provides a missing link supporting the usefulness of cIMT progression as a surrogate marker for CVD risk in clinical trials

    Bragatston study protocol: a multicentre cohort study on automated quantification of cardiovascular calcifications on radiotherapy planning CT scans for cardiovascular risk prediction in patients with breast cancer

    Get PDF
    Introduction Cardiovascular disease (CVD) is an important cause of death in breast cancer survivors. Some breast cancer treatments including anthracyclines, trastuzumab and radiotherapy can increase the risk of CVD, especially for patients with pre-existing CVD risk factors. Early identification of patients at increased CVD risk may allow switching to less cardiotoxic treatments, active surveillance or treatment of CVD risk factors. One of the strongest independent CVD risk factors is the presence and extent of coronary artery calcifications (CAC). In clinical practice, CAC are generally quantified on ECGtriggered cardiac CT scans. Patients with breast cancer treated with radiotherapy routinely undergo radiotherapy planning CT scans of the chest, and those scans could provide the opportunity to routinely assess CAC before a potentially cardiotoxic treatment. The Bragatston study aims to investigate the association between calcifications in the coronary arteries, aorta and heart valves (hereinafter called ‘cardiovascular calcifications’) measured automatically on planning CT scans of patients with breast cancer and CVD risk. Methods and analysis In a first step, we will optimise and validate a deep learning algorithm for automated quantification of cardiovascular calcifications on planning CT scans of patients with breast cancer. Then, in a multicentre cohort study (University Medical Center Utrecht, Utrecht, Erasmus MC Cancer Institute, Rotterdam and Radboudumc, Nijmegen, The Netherlands), the association between cardiovascular calcifications measured on planning CT scans of patients with breast cancer (n≈16 000) and incident (non-)fatal CVD events will be evaluated. To assess the added predictive value of these calcifications over traditional CVD risk factors and treatment characteristics, a case-cohort analysis will be performed among all cohort members diagnosed with a CVD event during follow-up (n≈200) and a random sample of the baseline cohort (n≈600). Ethics and dissemination The Institutional Review Boards of the participating hospitals decided that the Medical R

    SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions

    Get PDF
    Aims The aim of this study was to derive and validate the SCORE2-Older Persons (SCORE2-OP) risk model to estimate 5- and 10-year risk of cardiovascular disease (CVD) in individuals aged over 70 years in four geographical risk regions.Methods and results Sex-specific competing risk-adjusted models for estimating CVD risk (CVD mortality, myocardial infarction, or stroke) were derived in individuals aged over 65 without pre-existing atherosclerotic CVD from the Cohort of Norway (28 503 individuals, 10 089 CVD events). Models included age, smoking status, diabetes, systolic blood pressure, and total- and high-density lipoprotein cholesterol. Four geographical risk regions were defined based on country-specific CVD mortality rates. Models were recalibrated to each region using region-specific estimated CVD incidence rates and risk factor distributions. For external validation, we analysed data from 6 additional study populations {338 615 individuals, 33 219 CVD validation cohorts, C-indices ranged between 0.63 [95% confidence interval (CI) 0.61-0.65] and 0.67 (0.64-0.69)}. Regional calibration of expected-vs.-observed risks was satisfactory. For given risk factor profiles, there was substantial variation across the four risk regions in the estimated 10-year CVD event risk.Conclusions The competing risk-adjusted SCORE2-OP model was derived, recalibrated, and externally validated to estimate 5- and 10-year CVD risk in older adults (aged 70 years or older) in four geographical risk regions. These models can be used for communicating the risk of CVD and potential benefit from risk factor treatment and may facilitate shared decision-making between clinicians and patients in CVD risk management in older persons.Cardiolog

    SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe

    Get PDF
    Aims The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe.Methods and results We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low- risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries.Conclusion SCORE2-a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations-enhances the identification of individuals at higher risk of developing CVD across Europe.Cardiolog

    Trade-offs, co-benefits and safeguards: Current debates on the breadth of REDD+.

    No full text
    Fundamental trade-offs exist between different land uses for carbon, livelihoods, economic development, biodiversity, agriculture and energy (especially biofuels). This article analyses the scientific debates on REDD+ trade-offs, co-benefits and safeguards, and shows how the development and expanded scope of REDD+ mechanisms have shaped these debates over time. We find substantial evidence that the non-carbon values of biodiversity conservation, equity and sustainable livelihoods are critical to both the legitimacy and effectiveness of REDD+, and argue that they therefore are better viewed as prerequisites than as values to be safeguarded. Scientists can contribute to the development of a more integrative REDD+ through interdisciplinary research and through a ‘learning architecture’ that supports the REDD+ policy development process with research dedicated to finding durable solutions

    Will REDD+work? The need for interdisciplinary research to address key challenges

    No full text
    In this article, we draw on the contributions to this issue to address the question ‘Will REDD+ work?’. We do so by differentiating between how, where and when REDD+ might work. The article shows how issues of scope, scale and pace of REDD+ are related, and how interdisciplinary research can help to distill the lessons learned from REDD+ efforts currently underway. Important research areas include the drivers of deforestation and forest degradation, monitoring, reporting and verification, co-benefits, governance capacity, linkages with related policies, and the environmental and social impacts of REDD+. In concluding, we highlight the role of interdisciplinary research in supporting the different actors involved in REDD+ to cope with the inherent heterogeneity and complexity of REDD+
    corecore