9,984 research outputs found
Fluctuations in the electron system of a superconductor exposed to a photon flux
We report on fluctuations in the electron system, Cooper pairs and
quasiparticles, of a superconducting aluminium film. The superconductor is
exposed to pair-breaking photons (1.54 THz), which are coupled through an
antenna. The change in the complex conductivity of the superconductor upon a
change in the quasiparticle number is read out by a microwave resonator. A
large range in radiation power can be chosen by carefully filtering the
radiation from a blackbody source. We identify two regimes. At high radiation
power, fluctuations in the electron system caused by the random arrival rate of
the photons are resolved, giving a straightforward measure of the optical
efficiency (48%). At low radiation power fluctuations are dominated by excess
quasiparticles, the number of which is measured through their recombination
lifetime
Gait and electromyographic analysis of patients recovering after limb-saving surgery
Contains fulltext :
123683.pdf (publisher's version ) (Closed access
Modelling Planck-scale Lorentz violation via analogue models
Astrophysical tests of Planck-suppressed Lorentz violations had been
extensively studied in recent years and very stringent constraints have been
obtained within the framework of effective field theory. There are however
still some unresolved theoretical issues, in particular regarding the so called
"naturalness problem" - which arises when postulating that Planck-suppressed
Lorentz violations arise only from operators with mass dimension greater than
four in the Lagrangian. In the work presented here we shall try to address this
problem by looking at a condensed-matter analogue of the Lorentz violations
considered in quantum gravity phenomenology. Specifically, we investigate the
class of two-component BECs subject to laser-induced transitions between the
two components, and we show that this model is an example for Lorentz
invariance violation due to ultraviolet physics. We shall show that such a
model can be considered to be an explicit example high-energy Lorentz
violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum
Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200
Reduced frequency noise in superconducting resonators
We report a reduction of the frequency noise in coplanar waveguide
superconducting resonators. The reduction of 7 dB is achieved by removing the
exposed dielectric substrate surface from the region with high electric fields
and by using NbTiN. In a model-analysis the surface of NbTiN is found to be a
negligible source of noise, experimentally supported by a comparison with NbTiN
on SiOx resonators. The reduction is additive to decreasing the noise by
widening the resonators.Comment: 4 pages, 4 figure
Hawking radiation without black hole entropy
In this Letter I point out that Hawking radiation is a purely kinematic
effect that is generic to Lorentzian geometries. Hawking radiation arises for
any test field on any Lorentzian geometry containing an event horizon
regardless of whether or not the Lorentzian geometry satisfies the dynamical
Einstein equations of general relativity. On the other hand, the classical laws
of black hole mechanics are intrinsically linked to the Einstein equations of
general relativity (or their perturbative extension into either semiclassical
quantum gravity or string-inspired scenarios). In particular, the laws of black
hole thermodynamics, and the identification of the entropy of a black hole with
its area, are inextricably linked with the dynamical equations satisfied by the
Lorentzian geometry: entropy is proportional to area (plus corrections) if and
only if the dynamical equations are the Einstein equations (plus corrections).
It is quite possible to have Hawking radiation occur in physical situations in
which the laws of black hole mechanics do not apply, and in situations in which
the notion of black hole entropy does not even make any sense. This observation
has important implications for any derivation of black hole entropy that seeks
to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma
Bounding the Hubble flow in terms of the w parameter
The last decade has seen increasing efforts to circumscribe and bound the
cosmological Hubble flow in terms of model-independent constraints on the
cosmological fluid - such as, for instance, the classical energy conditions of
general relativity. Quite a bit can certainly be said in this regard, but much
more refined bounds can be obtained by placing more precise constraints (either
theoretical or observational) on the cosmological fluid. In particular, the use
of the w-parameter (w=p/rho) has become increasingly common as a surrogate for
trying to say something about the cosmological equation of state. Herein we
explore the extent to which a constraint on the w-parameter leads to useful and
nontrivial constraints on the Hubble flow, in terms of constraints on density
rho(z), Hubble parameter H(z), density parameter Omega(z), cosmological
distances d(z), and lookback time T(z). In contrast to other partial results in
the literature, we carry out the computations for arbitrary values of the space
curvature k in [-1,0,+1], equivalently for arbitrary Omega_0 <= 1.Comment: 15 page
Is Quantum Spacetime Foam Unstable?
A very simple wormhole geometry is considered as a model of a mode of
topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of
the hole reduces to quantum mechanics of one variable, throat radius, and
admits a WKB analysis. The hole is quantum-mechanically unstable: It has no
bound states. Wormhole wave functions must eventually leak to large radii. This
suggests that stability considerations along these lines may place strong
constraints on the nature and even the existence of spacetime foam.Comment: 15 page
Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations
We have measured the number of quasiparticles and their lifetime in aluminium
superconducting microwave resonators. The number of excess quasiparticles below
160 mK decreases from 72 to 17 m with a 6 dB decrease of the
microwave power. The quasiparticle lifetime increases accordingly from 1.4 to
3.5 ms. These properties of the superconductor were measured through the
spectrum of correlated fluctuations in the quasiparticle system and condensate
of the superconductor, which show up in the resonator amplitude and phase
respectively. Because uncorrelated noise sources vanish, fluctuations in the
superconductor can be studied with a sensitivity close to the vacuum noise
Inflation with a graceful exit and entrance driven by Hawking radiation
We present a model for cosmological inflation which has a natural "turn on"
and a natural "turn off" mechanism. In our model inflation is driven by the
Hawking-like radiation that occurs in Friedman-Robertson-Walker (FRW)
space-time. This Hawking-like radiation results in an effective negative
pressure "fluid" which leads to a rapid period of expansion in the very early
Universe. As the Universe expands the FRW Hawking temperature decreases and the
inflationary expansion turns off and makes a natural transition to the power
law expansion of a radiation dominated universe. The "turn on" mechanism is
more speculative, but is based on the common hypothesis that in a quantum
theory of gravity at very high temperatures/high densities Hawking radiation
will stop. Applying this speculation to the very early Universe implies that
the Hawking-like radiation of the FRW space-time will be turned off and
therefore the inflation driven by this radiation will turn off.Comment: 19 pages, 2 figures revtex, matches PRD published versio
- …