9,984 research outputs found

    Fluctuations in the electron system of a superconductor exposed to a photon flux

    Full text link
    We report on fluctuations in the electron system, Cooper pairs and quasiparticles, of a superconducting aluminium film. The superconductor is exposed to pair-breaking photons (1.54 THz), which are coupled through an antenna. The change in the complex conductivity of the superconductor upon a change in the quasiparticle number is read out by a microwave resonator. A large range in radiation power can be chosen by carefully filtering the radiation from a blackbody source. We identify two regimes. At high radiation power, fluctuations in the electron system caused by the random arrival rate of the photons are resolved, giving a straightforward measure of the optical efficiency (48%). At low radiation power fluctuations are dominated by excess quasiparticles, the number of which is measured through their recombination lifetime

    Modelling Planck-scale Lorentz violation via analogue models

    Full text link
    Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200

    Reduced frequency noise in superconducting resonators

    Get PDF
    We report a reduction of the frequency noise in coplanar waveguide superconducting resonators. The reduction of 7 dB is achieved by removing the exposed dielectric substrate surface from the region with high electric fields and by using NbTiN. In a model-analysis the surface of NbTiN is found to be a negligible source of noise, experimentally supported by a comparison with NbTiN on SiOx resonators. The reduction is additive to decreasing the noise by widening the resonators.Comment: 4 pages, 4 figure

    Hawking radiation without black hole entropy

    Get PDF
    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws of black hole mechanics do not apply, and in situations in which the notion of black hole entropy does not even make any sense. This observation has important implications for any derivation of black hole entropy that seeks to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma

    Bounding the Hubble flow in terms of the w parameter

    Full text link
    The last decade has seen increasing efforts to circumscribe and bound the cosmological Hubble flow in terms of model-independent constraints on the cosmological fluid - such as, for instance, the classical energy conditions of general relativity. Quite a bit can certainly be said in this regard, but much more refined bounds can be obtained by placing more precise constraints (either theoretical or observational) on the cosmological fluid. In particular, the use of the w-parameter (w=p/rho) has become increasingly common as a surrogate for trying to say something about the cosmological equation of state. Herein we explore the extent to which a constraint on the w-parameter leads to useful and nontrivial constraints on the Hubble flow, in terms of constraints on density rho(z), Hubble parameter H(z), density parameter Omega(z), cosmological distances d(z), and lookback time T(z). In contrast to other partial results in the literature, we carry out the computations for arbitrary values of the space curvature k in [-1,0,+1], equivalently for arbitrary Omega_0 <= 1.Comment: 15 page

    Is Quantum Spacetime Foam Unstable?

    Full text link
    A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.Comment: 15 page

    Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    Full text link
    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μ\mum3^{-3} with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to 3.5 ms. These properties of the superconductor were measured through the spectrum of correlated fluctuations in the quasiparticle system and condensate of the superconductor, which show up in the resonator amplitude and phase respectively. Because uncorrelated noise sources vanish, fluctuations in the superconductor can be studied with a sensitivity close to the vacuum noise

    Inflation with a graceful exit and entrance driven by Hawking radiation

    Full text link
    We present a model for cosmological inflation which has a natural "turn on" and a natural "turn off" mechanism. In our model inflation is driven by the Hawking-like radiation that occurs in Friedman-Robertson-Walker (FRW) space-time. This Hawking-like radiation results in an effective negative pressure "fluid" which leads to a rapid period of expansion in the very early Universe. As the Universe expands the FRW Hawking temperature decreases and the inflationary expansion turns off and makes a natural transition to the power law expansion of a radiation dominated universe. The "turn on" mechanism is more speculative, but is based on the common hypothesis that in a quantum theory of gravity at very high temperatures/high densities Hawking radiation will stop. Applying this speculation to the very early Universe implies that the Hawking-like radiation of the FRW space-time will be turned off and therefore the inflation driven by this radiation will turn off.Comment: 19 pages, 2 figures revtex, matches PRD published versio
    corecore