591 research outputs found
Transcriptional Analysis of Lennert Lymphoma Reveals a Unique Profile and Identifies Novel Therapeutic Targets
Lennert lymphoma (LL) is a lymphoepithelioid morphological variant of peripheral T-cell lymphoma—not otherwise specified (PTCL/NOS), clinically characterized by better prognosis if compared with other PTCL/NOS. Although well characterized as far as morphology and phenotype are concerned, very little is known regarding its molecular features. In this study, we investigated the transcriptional profile of this tumor aiming 1) to identify its cellular counterparts; 2) to better define its relation with other PTCLs—and, therefore, its possible position in lymphoma classification; and 3) to define pathogenetic mechanisms, possibly unveiling novel therapeutic targets. To address these issues, we performed gene and microRNA expression profiling on LL and other PTCL/NOS cases; we identified different genes and microRNAs that discriminated LL from other PTCL/NOS. Particularly, LL revealed a molecular signature significantly enriched in helper function and clearly distinguishable from other PTCL/NOS. Furthermore, PI3K/Akt/mTOR pathway emerged as novel potential therapeutic target. In conclusion, based on the already known particular morphological and clinical features, the new molecular findings support the hypothesis that LL might be classified as a separate entity. Preclinical and clinical studies testing the efficacy of PI3K/MTOR inhibitors in this setting are warranted
Magnetic breakdown in a normal-metal - superconductor proximity sandwich
We study the magnetic response of a clean normal-metal slab of finite
thickness in proximity with a bulk superconductor. We determine its free energy
and identify two (meta-)stable states, a diamagnetic one where the applied
field is effectively screened, and a second state, where the field penetrates
the normal-metal layer. We present a complete characterization of the first
order transition between the two states which occurs at the breakdown field,
including its spinodals, the jump in the magnetization, and the latent heat.
The bistable regime terminates at a critical temperature above which the sharp
transition is replaced by a continuous cross-over. We compare the theory with
experiments on normal-superconducting cylinders.Comment: 7 pages Revtex, 3 Postscript figures, needs psfig.te
INFLUENCE OF AGE AND HAND GRIP STRENGTH ON FREESTYLE PERFORMANCES IN MASTER SWIMMERS
The aim of our work was to examine whether age and hand grip strength are correlated with 50m, 100m, 200m, 400m, 800m swimming performance times in Master swimmers and how correlation varies considering short, middle or long distances. The main finding of this work was that hand grip strength and age correlated significantly at each distance. Hand grip strength showed a relevant influence on performance time and explained 52% of variance of performance time in 50m race freestyle and only 15% in 800m race. Increasing age was a disadvantageous factor for performance time, and explained 45% of variance of performance time in 800m race freestyle and only 20% in 50 m race
Paramagnetic reentrant effect in high purity mesoscopic AgNb proximity structures
We discuss the magnetic response of clean Ag coated Nb proximity cylinders in
the temperature range 150 \mu K < T < 9 K. In the mesoscopic temperature
regime, the normal metal-superconductor system shows the yet unexplained
paramagnetic reentrant effect, discovered some years ago [P. Visani, A. C.
Mota, and A. Pollini, Phys. Rev. Lett. 65, 1514 (1990)], superimposing on full
Meissner screening. The logarithmic slope of the reentrant paramagnetic
susceptibility chi_para(T) \propto \exp(-L/\xi_N) is limited by the condition
\xi_N=n L, with \xi_N=\hbar v_F/2 \pi k_B T, the thermal coherence length and
n=1,2,4. In wires with perimeters L=72 \mu m and L=130 \mu m, we observe
integer multiples n=1,2,4. At the lowest temperatures, \chi_para compensates
the diamagnetic susceptibility of the \textit{whole} AgNb structure.Comment: 4 pages, 4 figures (color
Diamagnetic response of cylindrical normal metal - superconductor proximity structures with low concentration of scattering centers
We have investigated the diamagnetic response of composite NS proximity
wires, consisting of a clean silver or copper coating, in good electrical
contact to a superconducting niobium or tantalum core. The samples show strong
induced diamagnetism in the normal layer, resulting in a nearly complete
Meissner screening at low temperatures. The temperature dependence of the
linear diamagnetic susceptibility data is successfully described by the
quasiclassical Eilenberger theory including elastic scattering characterised by
a mean free path l. Using the mean free path as the only fit parameter we found
values of l in the range 0.1-1 of the normal metal layer thickness d_N, which
are in rough agreement with the ones obtained from residual resistivity
measurements. The fits are satisfactory over the whole temperature range
between 5 mK and 7 K for values of d_N varying between 1.6 my m and 30 my m.
Although a finite mean free path is necessary to correctly describe the
temperature dependence of the linear response diamagnetic susceptibility, the
measured breakdown fields in the nonlinear regime follow the temperature and
thickness dependence given by the clean limit theory. However, there is a
discrepancy in the absolute values. We argue that in order to reach
quantitative agreement one needs to take into account the mean free path from
the fits of the linear response. [PACS numbers: 74.50.+r, 74.80.-g]Comment: 10 pages, 9 figure
Recommended from our members
Tau PET and multimodal brain imaging in patients at risk for chronic traumatic encephalopathy.
ObjectiveTo characterize individual and group-level neuroimaging findings in patients at risk for Chronic Traumatic Encephalopathy (CTE).MethodsEleven male patients meeting criteria for Traumatic Encephalopathy Syndrome (TES, median age: 64) underwent neurologic evaluation, 3-Tesla MRI, and PET with [18F]-Flortaucipir (FTP, tau-PET) and [11C]-Pittsburgh compound B (PIB, amyloid-PET). Six patients underwent [18F]-Fluorodeoxyglucose-PET (FDG, glucose metabolism). We assessed imaging findings at the individual patient level, and in group-level comparisons with modality-specific groups of cognitively normal older adults (CN). Tau-PET findings in patients with TES were also compared to a matched group of patients with mild cognitive impairment or dementia due to Alzheimer's disease (AD).ResultsAll patients with TES sustained repetitive head injury participating in impact sports, ten in American football. Three patients met criteria for dementia and eight had mild cognitive impairment. Two patients were amyloid-PET positive and harbored the most severe MRI atrophy, FDG hypometabolism, and FTP-tau PET binding. Among the nine amyloid-negative patients, tau-PET showed either mildly elevated frontotemporal binding, a "dot-like" pattern, or no elevated binding. Medial temporal FTP was mildly elevated in a subset of amyloid-negative patients, but values were considerably lower than in AD. Voxelwise analyses revealed a convergence of imaging abnormalities (higher FTP binding, lower FDG, lower gray matter volumes) in frontotemporal areas in TES compared to controls.ConclusionsMildly elevated tau-PET binding was observed in a subset of amyloid-negative patients at risk for CTE, in a distribution consistent with CTE pathology stages III-IV. FTP-PET may be useful as a biomarker of tau pathology in CTE but is unlikely to be sensitive to early disease stages
- …