47 research outputs found
Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector
Development of large mass detectors for low-energy neutrinos and dark matter
may allow supernova detection via neutrino-nucleus elastic scattering. An
elastic-scattering detector could observe a few, or more, events per ton for a
galactic supernova at 10 kpc ( m). This large yield, a
factor of at least 20 greater than that for existing light-water detectors,
arises because of the very large coherent cross section and the sensitivity to
all flavors of neutrinos and antineutrinos. An elastic scattering detector can
provide important information on the flux and spectrum of and
from supernovae. We consider many detectors and a range of target
materials from He to Pb. Monte Carlo simulations of low-energy
backgrounds are presented for the liquid-neon-based Cryogenic Low Energy
Astrophysics with Noble gases (CLEAN) detector. The simulated background is
much smaller than the expected signal from a galactic supernova.Comment: 10 pages, 5 figures, submitted to Phys. Rev.
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Measurement of the νe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set
This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)×106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Δm2=7.59-0.21+0.19×10 -5eV2 and θ=34.4-1.2+1.3degrees
A search for doubly charged higgs production in z0 decays
Contains fulltext :
124394.pdf (preprint version ) (Open Access
Agile Scrum Development in an ad hoc Software Collaboration
Developing sustainable scientific software for the needs of the scientific community requires expertise in both software engineering and domain science. This can be challenging due to the unique needs of scientific software, the insufficient resources for modern software engineering practices in the scientific community, and the complexity of evolving scientific contexts for developers. These difficulties can be reduced if scientists and developers collaborate. We present a case study wherein scientists from the SuperNova Early Warning System collaborated with software developers from the Scalable Cyberinfrastructure for Multi-Messenger Astrophysics project. The collaboration addressed the difficulties of scientific software development, but presented additional risks to each team. For the scientists, there was a concern of relying on external systems and lacking control in the development process. For the developers, there was a risk in supporting the needs of an user-group while maintaining core development. We mitigated these issues by utilizing an Agile Scrum framework to orchestrate the collaboration. This promoted communication and cooperation, ensuring that the scientists had an active role in development while allowing the developers to quickly evaluate and implement the scientists' software requirements. While each system was still in an early stage, the collaboration provided benefits for each group: the scientists kick-started their development by using an existing platform, and the developers utilized the scientists' use-case to improve their systems. This case study suggests that scientists and software developers can avoid some difficulties of scientific computing by collaborating and can address emergent concerns using Agile Scrum methods
Neutral current and day night measurements from the pure D2O phase of SNO
The Sudbury Neutrino Observatory is a 1000 T D2O Cerenkov detector that is sensitive to 8B solar neutrinos. The energy, radius, and direction with respect to the sun is measured for each neutrino event; these distributions are used to separately determine the rates of the charged current, neutral current and electron scattering reactions of neutrinos on deuterium. Assuming an undistorted 8B spectrum, the νe component of the 8B solar flux is φe = 1.76-0.05 +0.05 (stat. -0.09 +0.09 (syst.) × 106 cm-2s-1 based on events with a measured kinetic energy above 5 MeV. The non-νe component is φμτ = 3.41-0.45 +0.45 (stat. -0.45 +0.48 (syst.) × 106 cm-2s-1, 5.3σ greater than zero, providing strong evidence for solar νe flavor transformation. The total flux measured with the NC reaction is φNC = 5.09-0.43 +0.44(stat. -0.43 +0.46 (syst.) × 106 cm-2s-1, consistent with solar models. The night minus day rate is 14.0% ± 6.3%-1.4 +1.5% of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the νe asymmetry is found to be 7.0% ± 4.9%-1.2 +1.3%. A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the Large Mixing Angle (LMA) solution
Observation of coherent elastic neutrino-nucleus scattering
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.445
Recent results from SNO
The SNO project has now completed two of its three major phases of operation. The no-oscillation hypothesis has been ruled out at 5σ in the pure heavy water phase and 8σ in the salt phase. Discussion in terms of the SeeSaw model is presented
SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy
International audienceThe next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event
COHERENT 2018 at the Spallation Neutron Source
The primary goal of the COHERENT collaboration is to measure and study coherent elastic neutrino-nucleus scattering (CEvNS) using the high-power, few-tens-of-MeV, pulsed source of neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The COHERENT collaboration reported the first detection of CEvNS [Akimov:2017ade] using a CsI[Na] detector. At present the collaboration is deploying four detector technologies: a CsI[Na] scintillating crystal, p-type point-contact germanium detectors, single-phase liquid argon, and NaI[Tl] crystals. All detectors are located in the neutron-quiet basement of the SNS target building at distances 20-30 m from the SNS neutrino source. The simultaneous measurement in all four COHERENT detector subsystems will test the dependence of the cross section and search for new physics. In addition, COHERENT is measuring neutrino-induced neutrons from charged- and neutral-current neutrino interactions on nuclei in shielding materials, which represent a non-negligible background for CEvNS as well as being of intrinsic interest. The Collaboration is planning as well to look for charged-current interactions of relevance to supernova and weak-interaction physics. This document describes concisely the COHERENT physics motivations, sensitivity, and next plans for measurements at the SNS to be accomplished on a few-year timescale