38 research outputs found

    Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study

    Get PDF
    OBJECTIVE: The aim was to characterize the electrophysiological features and plasma biomarkers of critical illness polyneuropathy (CIN) and myopathy (CIM) in coronavirus disease 2019 (COVID-19) patients with intensive care unit acquired weakness (ICUAW). METHODS: An observational ICU cohort study including adult patients admitted to the ICU at Uppsala University Hospital, Uppsala, Sweden, from March 13th to June 8th 2020. We compared the clinical, electrophysiological and plasma biomarker data between COVID-19 patients who developed CIN/CIM and those who did not. Electrophysiological characteristics were also compared between COVID-19 and non-COVID-19 ICU patients. RESULTS: 111 COVID-19 patients were included, 11 of whom developed CIN/CIM. Patients with CIN/CIM had more severe illness; longer ICU stay, more thromboembolic events and were more frequently treated with invasive ventilation for longer than 2 weeks. In particular CIN was more frequent among COVID-19 patients with ICUAW (50%) compared with a non-COVID-19 cohort (0%, p = 0.008). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp) levels were higher in the CIN/CIM group compared with those that did not develop CIN/CIM (both p = 0.001) and correlated with nerve amplitudes. CONCLUSIONS: CIN/CIM was more prevalent among COVID-19 ICU patients with severe illness. SIGNIFICANCE: COVID-19 patients who later developed CIN/CIM had significantly higher NfL and GFAp in the early phase of ICU care, suggesting their potential as predictive biomarkers for CIN/CIM

    The extent of neuroradiological findings in COVID-19 shows correlation with blood biomarkers, Glasgow coma scale score and days in intensive care

    Get PDF
    Background and purpose: A wide range of neuroradiological findings has been reported in patients with coronavirus disease 2019 (COVID-19), ranging from subcortical white matter changes to infarcts, haemorrhages and focal contrast media enhancement. These have been descriptively but inconsistently reported and correlations with clinical findings and biomarkers have been difficult to extract from the literature. The purpose of this study was to quantify the extents of neuroradiological findings in a cohort of patients with COVID-19 and neurological symptoms, and to investigate correlations with clinical findings, duration of intensive care and biomarkers in blood. Material and methods: Patients with positive SARS-CoV-2 and at least one new-onset neurological symptom were included from April until July 2020. Nineteen patients were examined regarding clinical symptoms, biomarkers in blood and MRI of the brain. In order to quantify the MRI findings, a semi-quantitative neuroradiological severity scale was constructed a priori, and applied to the MR images by two specialists in neuroradiology. Results and conclusions: The score from the severity scale correlated significantly with blood biomarkers of CNS injury (glial fibrillary acidic protein, total-tau, ubiquitin carboxyl-terminal hydrolase L1) and inflammation (C-reactive protein), Glasgow Coma Scale score, and the number of days spent in intensive care. The underlying radiological assessments had inter-rater agreements of 90.5%/86% (for assessments with 2/3 alternatives). Total intraclass correlation was 0.80. Previously reported neuroradiological findings in COVID-19 have been diverse and heterogenous. In this study, the extent of findings in MRI examination of the brain, quantified using a structured report, shows correlation with relevant biomarkers

    Biomarkers for CNS injury in CSF are elevated in COVID-19 and associated with neurological symptoms and disease severity

    Get PDF
    BACKGROUND: Neurological symptoms have been frequently reported in hospitalized patients with coronavirus disease 2019 (COVID-19) and biomarkers of CNS injury are reported to be increased in plasma but not extensively studied in CSF. This study examines CSF for biomarkers of CNS injury and other pathology in relation to neurological symptoms and disease severity in patients with neurological manifestations of COVID-19. METHODS: Nineteen patients with neurological symptoms and mild to critical COVID-19 were prospectively included. Extensive analysis of CSF, including measurement of biomarkers of CNS injury (neurofilament light chain protein (NfL) glial fibrillary acidic protein (GFAp) and total tau) was performed and related to neurological features and disease severity. RESULTS: Neurological symptoms included altered mental status (42%), headache (42%), central (21%) and peripheral weakness (32%). Two patients demonstrated minor pleocytosis and four patients had increased immunoglobulin G levels in CSF. Neuronal autoantibody testing using commercial tests was negative in all patients. Increased CSF levels of NfL, GFAp and total-tau protein were seen in 63%, 37%, and 16% of patients, respectively. Increased NfL correlated with disease severity, time in intensive care and level of consciousness. NfL in CSF was higher in patients with central neurological symptoms. CONCLUSION: Although limited by small sample size, our data suggest that levels of NfL, GFAp and total tau in CSF are commonly elevated in patients with COVID-19 with neurological symptoms. This is in contrast to the standard CSF work-up where pathological findings are scarce. NfL in particular, is associated with central neurological symptoms and disease severity

    Anti-SARS-CoV2 antibody responses in serum and cerebrospinal fluid of COVID-19 patients with neurological symptoms

    Get PDF
    Antibody responses to SARS-CoV-2 in serum and CSF from 16 COVID-19 patients with neurological symptoms were assessed using two independent methods. IgG specific for the virus spike protein was found in 81% of cases in serum and in 56% in CSF. SARS-CoV-2 IgG in CSF was observed in two cases with negative serology. Levels of IgG in both serum and CSF were associated with disease severity (p<0.05). All patients with elevated markers of CNS damage in CSF also had CSF antibodies (p=0.002), and CSF antibodies had the highest predictive value for neuronal damage markers of all tested clinical variables

    Arterial spin-labeling perfusion MR imaging demonstrates regional cbf decrease in idiopathic normal pressure hydrocephalus

    No full text
    BACKGROUND AND PURPOSE: Regional cerebral blood flow has previously been studied in patients with idiopathic normal pressure hydrocephalus with imaging methods that require an intravenous contrast agent or expose the patient to ionizing radiation. The purpose of this study was to assess regional CBF in patients with idiopathic normal pressure hydrocephalus compared with healthy controls using the noninvasive quantitative arterial spin-labeling MR imaging technique. A secondary aim was to compare the correlation between symptom severity and CBF. MATERIALS AND METHODS: Differences in regional cerebral perfusion between patients with idiopathic normal pressure hydrocephalus and healthy controls were investigated with pseudocontinuous arterial spin-labeling perfusion MR imaging. Twenty-one consecutive patients with idiopathic normal pressure hydrocephalus and 21 age- and sex-matched randomly selected healthy controls from the population registry were prospectively included. The controls did not differ from patients with respect to selected vascular risk factors. Twelve different anatomic ROIs were manually drawn on coregistered FLAIR images. The Holm-Bonferroni correction was applied to statistical analyses. RESULTS: In patients with idiopathic normal pressure hydrocephalus, perfusion was reduced in the periventricular white matter (P < .001), lentiform nucleus (P < .001), and thalamus (P < .001) compared with controls. Cognitive function in patients correlated with CBF in the periventricular white matter (r = 0.60, P < .01), cerebellum (r = 0.63, P < .01), and pons (r = 0.71, P < .001). CONCLUSIONS: Using pseudocontinuous arterial spin-labeling, we could confirm findings of a reduced perfusion in the periventricular white matter, basal ganglia, and thalamus in patients with idiopathic normal pressure hydrocephalus previously observed with other imaging techniques

    Aqueductal CSF Stroke Volume Is Increased in Patients with Idiopathic Normal Pressure Hydrocephalus and Decreases after Shunt Surgery

    No full text
    BACKGROUND AND PURPOSE: Increased CSF stroke volume through the cerebral aqueduct has been proposed as a possible indicator of positive surgical outcome in patients with idiopathic normal pressure hydrocephalus; however, consensus is lacking. In this prospective study, we aimed to compare CSF flow parameters in patients with idiopathic normal pressure hydrocephalus with those in healthy controls and change after shunt surgery and to investigate whether any parameter could predict surgical outcome. MATERIALS AND METHODS: Twenty-one patients with idiopathic normal pressure hydrocephalus and 21 age- and sex-matched healthy controls were prospectively included and examined clinically and with MR imaging of the brain. Eighteen patients were treated with shunt implantation and were re-examined clinically and with MR imaging the day before the operation and 3 months postoperatively. All MR imaging scans included a phase-contrast sequence. RESULTS: The median aqueductal CSF stroke volume was significantly larger in patients compared with healthy controls (103.5 ÎŒL; interquartile range, 69.8-142.8 ÎŒL) compared with 62.5 ÎŒL (interquartile range, 58.3-73.8 ÎŒL; P < .01) and was significantly reduced 3 months after shunt surgery from 94.8 ÎŒL (interquartile range, 81-241 ÎŒL) to 88 ÎŒL (interquartile range, 51.8-173.3 ÎŒL; P < .05). Net flow in the caudocranial direction (retrograde) was present in 11/21 patients and in 10/21 controls. Peak flow and net flow did not differ between patients and controls. There were no correlations between any CSF flow parameters and surgical outcomes. CONCLUSIONS: Aqueductal CSF stroke volume was increased in patients with idiopathic normal pressure hydrocephalus and decreased after shunt surgery, whereas retrograde aqueductal net flow did not seem to be specific for patients with idiopathic normal pressure hydrocephalus. On the basis of the results, the usefulness of CSF flow parameters to predict outcome after shunt surgery seem to be limited
    corecore