35 research outputs found

    The Histone 3'-Terminal Stem-Loop-Binding Protein Enhances Translation through a Functional and Physical Interaction with Eukaryotic Initiation Factor 4G (eIF4G) and eIF3

    Get PDF
    Metazoan cell cycle-regulated histone mRNAs are unique cellular mRNAs in that they terminate in a highly conserved stem-loop structure instead of a poly(A) tail. Not only is the stem-loop structure necessary for 3'-end formation but it regulates the stability and translational efficiency of histone mRNAs. The histone stem-loop structure is recognized by the stem-loop-binding protein (SLBP), which is required for the regulation of mRNA processing and turnover. In this study, we show that SLBP is required for the translation of mRNAs containing the histone stem-loop structure. Moreover, we show that the translation of mRNAs ending in the histone stem-loop is stimulated in Saccharomyces cerevisiae cells expressing mammalian SLBP. The translational function of SLBP genetically required eukaryotic initiation factor 4E (eIF4E), eIF4G, and eIF3, and expressed SLBP coisolated with S. cerevisiae initiation factor complexes that bound the 5' cap in a manner dependent on eIF4G and eIF3. Furthermore, eIF4G coimmunoprecipitated with endogenous SLBP in mammalian cell extracts and recombinant SLBP and eIF4G coisolated. These data indicate that SLBP stimulates the translation of histone mRNAs through a functional interaction with both the mRNA stem-loop and the 5' cap that is mediated by eIF4G and eIF3

    Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts

    Get PDF
    Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin

    eIF4G: Translations mystery factor begins to yield its secrets

    No full text
    No description supplie
    corecore