478 research outputs found
The problem of artificial precision in theories of vagueness: a note on the role of maximal consistency
The problem of artificial precision is a major objection to any theory of
vagueness based on real numbers as degrees of truth. Suppose you are willing to
admit that, under sufficiently specified circumstances, a predication of "is
red" receives a unique, exact number from the real unit interval [0,1]. You
should then be committed to explain what is it that determines that value,
settling for instance that my coat is red to degree 0.322 rather than 0.321. In
this note I revisit the problem in the important case of {\L}ukasiewicz
infinite-valued propositional logic that brings to the foreground the role of
maximally consistent theories. I argue that the problem of artificial
precision, as commonly conceived of in the literature, actually conflates two
distinct problems of a very different nature.Comment: 11 pages, 2 table
Stone duality above dimension zero: Axiomatising the algebraic theory of C(X)
It has been known since the work of Duskin and Pelletier four decades ago
that KH^op, the category opposite to compact Hausdorff spaces and continuous
maps, is monadic over the category of sets. It follows that KH^op is equivalent
to a possibly infinitary variety of algebras V in the sense of Slominski and
Linton. Isbell showed in 1982 that the Lawvere-Linton algebraic theory of V can
be generated using a finite number of finitary operations, together with a
single operation of countably infinite arity. In 1983, Banaschewski and Rosicky
independently proved a conjecture of Bankston, establishing a strong negative
result on the axiomatisability of KH^op. In particular, V is not a finitary
variety--Isbell's result is best possible. The problem of axiomatising V by
equations has remained open. Using the theory of Chang's MV-algebras as a key
tool, along with Isbell's fundamental insight on the semantic nature of the
infinitary operation, we provide a finite axiomatisation of V.Comment: 26 pages. Presentation improve
Two isomorphism criteria for directed colimits
Using the general notions of finitely presentable and finitely generated
object introduced by Gabriel and Ulmer in 1971, we prove that, in any (locally
small) category, two sequences of finitely presentable objects and morphisms
(or two sequences of finitely generated objects and monomorphisms) have
isomorphic colimits (=direct limits) if, and only if, they are confluent. The
latter means that the two given sequences can be connected by a back-and-forth
chain of morphisms that is cofinal on each side, and commutes with the
sequences at each finite stage. In several concrete situations, analogous
isomorphism criteria are typically obtained by ad hoc arguments. The abstract
results given here can play the useful r\^ole of discerning the general from
the specific in situations of actual interest. We illustrate by applying them
to varieties of algebras, on the one hand, and to dimension groups---the
ordered of approximately finite-dimensional C*-algebras---on the other.
The first application encompasses such classical examples as Kurosh's
isomorphism criterion for countable torsion-free Abelian groups of finite rank.
The second application yields the Bratteli-Elliott Isomorphism Criterion for
dimension groups. Finally, we discuss Bratteli's original isomorphism criterion
for approximately finite-dimensional C*-algebras, and show that his result does
not follow from ours.Comment: 10 page
Unital hyperarchimedean vector lattices
We prove that the category of unital hyperarchimedean vector lattices is
equivalent to the category of Boolean algebras. The key result needed to
establish the equivalence is that, via the Yosida representation, such a vector
lattice is naturally isomorphic to the vector lattice of all locally constant
real-valued continuous functions on a Boolean (=compact Hausdorff totally
disconnected) space. We give two applications of our main result.Comment: 15 pages. Submitted pape
MV-algebras freely generated by finite Kleene algebras
If V and W are varieties of algebras such that any V-algebra A has a reduct
U(A) in W, there is a forgetful functor U: V->W that acts by A |-> U(A) on
objects, and identically on homomorphisms. This functor U always has a left
adjoint F: W->V by general considerations. One calls F(B) the V-algebra freely
generated by the W-algebra B. Two problems arise naturally in this broad
setting. The description problem is to describe the structure of the V-algebra
F(B) as explicitly as possible in terms of the structure of the W-algebra B.
The recognition problem is to find conditions on the structure of a given
V-algebra A that are necessary and sufficient for the existence of a W-algebra
B such that F(B) is isomorphic to A. Building on and extending previous work on
MV-algebras freely generated by finite distributive lattices, in this paper we
provide solutions to the description and recognition problems in case V is the
variety of MV-algebras, W is the variety of Kleene algebras, and B is finitely
generated--equivalently, finite. The proofs rely heavily on the Davey-Werner
natural duality for Kleene algebras, on the representation of finitely
presented MV-algebras by compact rational polyhedra, and on the theory of bases
of MV-algebras.Comment: 27 pages, 8 figures. Submitted to Algebra Universali
Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality
We study representations of MV-algebras -- equivalently, unital
lattice-ordered abelian groups -- through the lens of Stone-Priestley duality,
using canonical extensions as an essential tool. Specifically, the theory of
canonical extensions implies that the (Stone-Priestley) dual spaces of
MV-algebras carry the structure of topological partial commutative ordered
semigroups. We use this structure to obtain two different decompositions of
such spaces, one indexed over the prime MV-spectrum, the other over the maximal
MV-spectrum. These decompositions yield sheaf representations of MV-algebras,
using a new and purely duality-theoretic result that relates certain sheaf
representations of distributive lattices to decompositions of their dual
spaces. Importantly, the proofs of the MV-algebraic representation theorems
that we obtain in this way are distinguished from the existing work on this
topic by the following features: (1) we use only basic algebraic facts about
MV-algebras; (2) we show that the two aforementioned sheaf representations are
special cases of a common result, with potential for generalizations; and (3)
we show that these results are strongly related to the structure of the
Stone-Priestley duals of MV-algebras. In addition, using our analysis of these
decompositions, we prove that MV-algebras with isomorphic underlying lattices
have homeomorphic maximal MV-spectra. This result is an MV-algebraic
generalization of a classical theorem by Kaplansky stating that two compact
Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous
[0, 1]-valued functions on the spaces are isomorphic.Comment: 36 pages, 1 tabl
- …