478 research outputs found

    The problem of artificial precision in theories of vagueness: a note on the role of maximal consistency

    Get PDF
    The problem of artificial precision is a major objection to any theory of vagueness based on real numbers as degrees of truth. Suppose you are willing to admit that, under sufficiently specified circumstances, a predication of "is red" receives a unique, exact number from the real unit interval [0,1]. You should then be committed to explain what is it that determines that value, settling for instance that my coat is red to degree 0.322 rather than 0.321. In this note I revisit the problem in the important case of {\L}ukasiewicz infinite-valued propositional logic that brings to the foreground the role of maximally consistent theories. I argue that the problem of artificial precision, as commonly conceived of in the literature, actually conflates two distinct problems of a very different nature.Comment: 11 pages, 2 table

    Stone duality above dimension zero: Axiomatising the algebraic theory of C(X)

    Get PDF
    It has been known since the work of Duskin and Pelletier four decades ago that KH^op, the category opposite to compact Hausdorff spaces and continuous maps, is monadic over the category of sets. It follows that KH^op is equivalent to a possibly infinitary variety of algebras V in the sense of Slominski and Linton. Isbell showed in 1982 that the Lawvere-Linton algebraic theory of V can be generated using a finite number of finitary operations, together with a single operation of countably infinite arity. In 1983, Banaschewski and Rosicky independently proved a conjecture of Bankston, establishing a strong negative result on the axiomatisability of KH^op. In particular, V is not a finitary variety--Isbell's result is best possible. The problem of axiomatising V by equations has remained open. Using the theory of Chang's MV-algebras as a key tool, along with Isbell's fundamental insight on the semantic nature of the infinitary operation, we provide a finite axiomatisation of V.Comment: 26 pages. Presentation improve

    Two isomorphism criteria for directed colimits

    Get PDF
    Using the general notions of finitely presentable and finitely generated object introduced by Gabriel and Ulmer in 1971, we prove that, in any (locally small) category, two sequences of finitely presentable objects and morphisms (or two sequences of finitely generated objects and monomorphisms) have isomorphic colimits (=direct limits) if, and only if, they are confluent. The latter means that the two given sequences can be connected by a back-and-forth chain of morphisms that is cofinal on each side, and commutes with the sequences at each finite stage. In several concrete situations, analogous isomorphism criteria are typically obtained by ad hoc arguments. The abstract results given here can play the useful r\^ole of discerning the general from the specific in situations of actual interest. We illustrate by applying them to varieties of algebras, on the one hand, and to dimension groups---the ordered K0K_0 of approximately finite-dimensional C*-algebras---on the other. The first application encompasses such classical examples as Kurosh's isomorphism criterion for countable torsion-free Abelian groups of finite rank. The second application yields the Bratteli-Elliott Isomorphism Criterion for dimension groups. Finally, we discuss Bratteli's original isomorphism criterion for approximately finite-dimensional C*-algebras, and show that his result does not follow from ours.Comment: 10 page

    Unital hyperarchimedean vector lattices

    Get PDF
    We prove that the category of unital hyperarchimedean vector lattices is equivalent to the category of Boolean algebras. The key result needed to establish the equivalence is that, via the Yosida representation, such a vector lattice is naturally isomorphic to the vector lattice of all locally constant real-valued continuous functions on a Boolean (=compact Hausdorff totally disconnected) space. We give two applications of our main result.Comment: 15 pages. Submitted pape

    MV-algebras freely generated by finite Kleene algebras

    Full text link
    If V and W are varieties of algebras such that any V-algebra A has a reduct U(A) in W, there is a forgetful functor U: V->W that acts by A |-> U(A) on objects, and identically on homomorphisms. This functor U always has a left adjoint F: W->V by general considerations. One calls F(B) the V-algebra freely generated by the W-algebra B. Two problems arise naturally in this broad setting. The description problem is to describe the structure of the V-algebra F(B) as explicitly as possible in terms of the structure of the W-algebra B. The recognition problem is to find conditions on the structure of a given V-algebra A that are necessary and sufficient for the existence of a W-algebra B such that F(B) is isomorphic to A. Building on and extending previous work on MV-algebras freely generated by finite distributive lattices, in this paper we provide solutions to the description and recognition problems in case V is the variety of MV-algebras, W is the variety of Kleene algebras, and B is finitely generated--equivalently, finite. The proofs rely heavily on the Davey-Werner natural duality for Kleene algebras, on the representation of finitely presented MV-algebras by compact rational polyhedra, and on the theory of bases of MV-algebras.Comment: 27 pages, 8 figures. Submitted to Algebra Universali

    Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality

    Full text link
    We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.Comment: 36 pages, 1 tabl
    • …
    corecore