1,574 research outputs found
Resonant, broadband and highly efficient optical frequency conversion in semiconductor nanowire gratings at visible and UV wavelengths
Using a hydrodynamic approach we examine bulk- and surface-induced second and
third harmonic generation from semiconductor nanowire gratings having a
resonant nonlinearity in the absorption region. We demonstrate resonant,
broadband and highly efficient optical frequency conversion: contrary to
conventional wisdom, we show that harmonic generation can take full advantage
of resonant nonlinearities in a spectral range where nonlinear optical
coefficients are boosted well beyond what is achievable in the transparent,
long-wavelength, non-resonant regime. Using femtosecond pulses with
approximately 500 MW/cm2 peak power density, we predict third harmonic
conversion efficiencies of approximately 1% in a silicon nanowire array, at
nearly any desired UV or visible wavelength, including the range of negative
dielectric constant. We also predict surface second harmonic conversion
efficiencies of order 0.01%, depending on the electronic effective mass,
bistable behavior of the signals as a result of a reshaped resonance, and the
onset fifth order nonlinear effects. These remarkable findings, arising from
the combined effects of nonlinear resonance dispersion, field localization, and
phase-locking, could significantly extend the operational spectral bandwidth of
silicon photonics, and strongly suggest that neither linear absorption nor skin
depth should be motivating factors to exclude either semiconductors or metals
from the list of useful or practical nonlinear materials in any spectral range.Comment: 12 pages, 4 figure
Fano collective resonance as complex mode in a two dimensional planar metasurface of plasmonic nanoparticles
Fano resonances are features in transmissivity/reflectivity/absorption that
owe their origin to the interaction between a bright resonance and a dark
(i.e., sub-radiant) narrower resonance, and may emerge in the optical
properties of planar two-dimensional (2D) periodic arrays (metasurfaces) of
plasmonic nanoparticles. In this Letter, we provide a thorough assessment of
their nature for the general case of normal and oblique plane wave incidence,
highlighting when a Fano resonance is affected by the mutual coupling in an
array and its capability to support free modal solutions. We analyze the
representative case of a metasurface of plasmonic nanoshells at ultraviolet
frequencies and compute its absorption under TE- and TM-polarized, oblique
plane-wave incidence. In particular, we find that plasmonic metasurfaces
display two distinct types of resonances observable as absorption peaks: one is
related to the Mie, dipolar resonance of each nanoparticle; the other is due to
the forced excitation of free modes with small attenuation constant, usually
found at oblique incidence. The latter is thus an array-induced collective Fano
resonance. This realization opens up to manifold flexible designs at optical
frequencies mixing individual and collective resonances. We explain the
physical origin of such Fano resonances using the modal analysis, which allows
to calculate the free modes with complex wavenumber supported by the
metasurface. We define equivalent array dipolar polarizabilities that are
directly related to the absorption physics at oblique incidence and show a
direct dependence between array modal phase and attenuation constant and Fano
resonances. We thus provide a more complete picture of Fano resonances that may
lead to the design of filters, energy-harvesting devices, photodetectors, and
sensors at ultraviolet frequencies.Comment: 6 pages, 5 figure
Hyperbolic Balance Laws with a Non Local Source
This paper is devoted to hyperbolic systems of balance laws with non local
source terms. The existence, uniqueness and Lipschitz dependence proved here
comprise previous results in the literature and can be applied to physical
models, such as Euler system for a radiating gas and Rosenau regularization of
the Chapman-Enskog expansion.Comment: 26 page
Transport coefficients from the Boson Uehling-Uhlenbeck Equation
We derive microscopic expressions for the bulk viscosity, shear viscosity and
thermal conductivity of a quantum degenerate Bose gas above , the critical
temperature for Bose-Einstein condensation. The gas interacts via a contact
potential and is described by the Uehling-Uhlenbeck equation. To derive the
transport coefficients, we use Rayleigh-Schrodinger perturbation theory rather
than the Chapman-Enskog approach. This approach illuminates the link between
transport coefficients and eigenvalues of the collision operator. We find that
a method of summing the second order contributions using the fact that the
relaxation rates have a known limit improves the accuracy of the computations.
We numerically compute the shear viscosity and thermal conductivity for any
boson gas that interacts via a contact potential. We find that the bulk
viscosity remains identically zero as it is for the classical case.Comment: 10 pages, 2 figures, submitted to Phys. Rev.
Correlated defects, metal-insulator transition, and magnetic order in ferromagnetic semiconductors
The effect of disorder on transport and magnetization in ferromagnetic III-V
semiconductors, in particular (Ga,Mn)As, is studied theoretically. We show that
Coulomb-induced correlations of the defect positions are crucial for the
transport and magnetic properties of these highly compensated materials. We
employ Monte Carlo simulations to obtain the correlated defect distributions.
Exact diagonalization gives reasonable results for the spectrum of valence-band
holes and the metal-insulator transition only for correlated disorder. Finally,
we show that the mean-field magnetization also depends crucially on defect
correlations.Comment: 4 pages RevTeX4, 5 figures include
Shaping concepts of technology : what concepts and how to shape them?
Philosophy of technology is a discipline that has much to offer for technology education. Insights into the real nature of technology and its relationship with science and society can help technology educators to build a subject that helps pupils get a good concept of technology and to learn to understand and use concepts in technology. Here the way science educators have gained from the philosophy of science, for example in the idea of the way pupils learn concepts by reconstructing pre-concepts that they picked up from daily-life experiences. Research has shown that the learning of concepts and the learning of process skills have to be connected
|\epsilon|-Near-Zero materials in the near-infrared
We consider a mixture of metal coated quantum dots dispersed in a polymer
matrix and, using a modified version of the standard Maxwell-Garnett mixing
rule, we prove that the mixture parameters (particles radius, quantum dots
gain, etc.) can be chosen so that the effective medium permittivity has an
absolute value very close to zero in the near-infrared, i.e. |Re(epsilon)|<<1
and |Im (epsilon)|<<1 at the same near-infrared wavelength. Resorting to
full-wave simulations, we investigate the accuracy of the effective medium
predictions and we relate their discrepancy with rigorous numerical results to
the fact that |epsilon|<<1 is a critical requirement. We show that a simple
method for reducing this discrepancy, and hence for achieving a prescribed
value of |\epsilon|, consists in a subsequent fine-tuning of the nanoparticles
volume filling fraction.Comment: 3 pages, 3 figure
- …