5 research outputs found

    Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions

    Get PDF
    Multiple sclerosis is a chronic inflammatory, demyelinating disease, although it has been suggested that in the progressive late phase, inflammatory lesion activity declines. We recently showed in the Netherlands Brain Bank multiple sclerosis-autopsy cohort considerable ongoing inflammatory lesion activity also at the end stage of the disease, based on microglia/macrophage activity. We have now studied the role of T cells in this ongoing inflammatory lesion activity in chronic multiple sclerosis autopsy cases. We quantified T cells and perivascular T-cell cuffing at a standardized location in the medulla oblongata in 146 multiple sclerosis, 20 neurodegenerative control and 20 non-neurological control brain donors. In addition, we quantified CD3+, CD4+, and CD8+ T cells in 140 subcortical white matter lesions. The location of CD8+ T cells in either the perivascular space or the brain parenchyma was determined using CD8/laminin staining and confocal imaging. Finally, we analysed CD8+ T cells, isolated from fresh autopsy tissues from subcortical multiple sclerosis white matter lesions (n = 8), multiple sclerosis normal-ap

    Absence of B Cells in Brainstem and White Matter Lesions Associates With Less Severe Disease and Absence of Oligoclonal Bands in MS

    Get PDF
    OBJECTIVE: To determine whether B-cell presence in brainstem and white matter (WM) lesions is associated with poorer pathological and clinical characteristics in advanced MS autopsy cases. METHODS: Autopsy tissue of 140 MS and 24 control cases and biopsy tissue of 24 patients with MS were examined for CD20+ B cells and CD138+ plasma cells. The presence of these cells was compared with pathological and clinical characteristics. In corresponding CSF and plasma, immunoglobulin (Ig) G ratio and oligoclonal band (OCB) patterns were determined. In a clinical cohort of 73 patients, the presence of OCBs was determined during follow-up and compared to status at diagnosis. RESULTS: In 34% of active and 71% of mixed active/inactive lesions, B cells were absent, which correlated with less pronounced meningeal B-cell infiltration (p < 0.0001). The absence of B cells and plasma cells in brainstem and WM lesions was associated with a longer disease duration (p = 0.001), less frequent secondary progressive MS compared with relapsing and primary progressive MS (p < 0.0001 and p = 0.046, respectively), a lower proportion of mixed active/inactive lesions (p = 0.01), and less often perivascular T-cell clustering (p < 0.0001). Moreover, a lower CSF IgG ratio (p = 0.006) and more frequent absence of OCBs (p < 0.0001) were not

    Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis

    Get PDF
    Myeloid cells contribute to inflammation and demyelination in the early stages of multiple sclerosis (MS), but it is still unclear to what extent these cells are involved in active lesion formation in progressive MS (PMS). Here, we have harnessed the power of single-cell mass cytometry (CyTOF) to compare myeloid cell phenotypes in active lesions of PMS donors with those in normal-appearing white matter from the same donors and control white matter from non-MS donors. CyTOF measurements of a total of 74 targeted proteins revealed a decreased abundance of homeostatic and TNFhi microglia, and an increase in highly phagocytic and activated microglia states in active lesions of PMS donors. Interestingly, in contrast to results obtained from studies of the inflammatory early disease stages of MS, infiltrating monocyte-derived macrophages were scarce in active lesions of PMS, suggesting fundamental differences of myeloid cell composition in advanced stages of PMS
    corecore