61 research outputs found

    Detection of Provasopressin in Invasive and Non-invasive (DCIS) Human Breast Cancer Using a Monoclonal Antibody Directed Against the C-terminus (MAG1)

    Get PDF
    The provasopressin protein (proAVP) is expressed by invasive breast cancer and non-invasive breast cancer, or ductal carcinoma in situ (DCIS). Here we demonstrate the ability of the monoclonal antibody MAG1 directed against the C-terminal end of proAVP to identify proAVP in all cases examined of human invasive cancer and DCIS (35 and 26, respectively). Tissues were chosen to represent a relevant variation in tumor type, grade, patient age, and menopausal status. By comparison, there was 65% positive staining for estrogen receptor, 61% for progesterone receptor, 67% for nuclear p53, and 39% for c-Erb-B2 with the invasive breast cancer sections. Reaction with the normal tissue types examined (67) was restricted to the vasopressinergic magnocellular neurons of the hypothalamus, where provasopressin is normally produced, and the posterior pituitary, where these neurons terminate. The breast epithelial tissue sections on the tissue microarray did not react with MAG1. Previously, we demonstrated that polyclonal antibodies to proAVP detected that protein in all breast cancer samples examined, but there was no reaction with breast tissue containing fibrocystic disease. The results presented here not only expand upon those earlier results, but they also demonstrate the specificity and effectiveness of what may be considered a more clinically-relevant agent. Thus, proAVP appears to be an attractive target for the detection of invasive breast cancer and DCIS, and these results suggest that MAG1 may be a beneficial tool for use in the development of such strategies

    The β€œSpot 14” Gene Resides on the Telomeric End of the 11q13 Amplicon and is Expressed in Lipogenic Breast Cancers: Implications for Control of Tumor Metabolism

    Get PDF
    Enhanced long chain fatty acid synthesis may occur in breast cancer, where it is necessary for tumor growth and predicts a poor prognosis. β€œSpot 14” (S14) is a carbohydrate- and thyroid hormone-inducible nuclear protein specific to liver, adipose, and lactating mammary tissues that functions to activate genes encoding the enzymes of fatty acid synthesis. Amplification of chromosome region 11q13, where the S14 gene (THRSP) resides, also predicts a poor prognosis in breast tumors. We localized the S14 gene between markers D11S906 and D11S937, at the telomeric end of the amplified region at 11q13, and found that it was amplified and expressed in breast cancer-derived cell lines. Moreover, concordant expression of S14 and a key lipogenic enzyme (acetyl-CoA carboxylase) in a panel of primary breast cancer specimens strongly supported a role for S14 as a determinant of tumor lipid metabolism. S14 expression provides a pathophysiological link between two prognostic indicators in breast cancer: enhanced lipogenesis and 11q13 amplification

    Repression of cyclin D1 as a target for germ cell tumors

    Get PDF
    Metastatic germ cell tumors (GCT) are curable, however GCTs refractory to cisplatin-based chemotherapy have a poor prognosis. This study explores D-type cyclins as molecular targets in GCTs because all-trans-retinoic acid (RA)-mediated differentiation of the human embryonal carcinoma (EC) cell line NT2/D1 is associated with G1 cell cycle arrest and proteasomal degradation of cyclin D1. RA effects on D-type cyclins are compared in human EC cells that are RA sensitive or dually RA and cisplatin resistant (NT2/D1-R1) and in clinical GCTs that have both EC and mature teratoma components. Notably, GCT differentiation was associated with reduced cyclin D1 but increased cyclin D3 expression. RA was shown here to repress cyclin D1 through a transcriptional mechanism in addition to causing its degradation. The siRNA-mediated repression of individual cyclin D species resulted in growth inhibition in both RA sensitive and resistant EC cells. Only repression of cyclin D1 occurred in vitro and when clinical GCTs mature, implicating cyclin D1 as a molecular therapeutic target. To confirm this, the EGFR-tyrosine kinase inhibitor, Erlotinib, was used to repress cyclin D1. This inhibited proliferation in RA and cisplatin sensitive and resistant EC cells. Taken together, these findings implicate cyclin D1 targeting agents for the treatment of GCTs

    Molecular and Antigenic Characterization of Reassortant H3N2 Viruses from Turkeys with a Unique Constellation of Pandemic H1N1 Internal Genes

    Get PDF
    Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro

    Basic Principles of Image Processing

    No full text
    • …
    corecore