63 research outputs found

    Bounds on collapse models from cold-atom experiments

    Get PDF
    The spontaneous localization mechanism of collapse models induces a Brownian motion in all physical systems. This effect is very weak, but experimental progress in creating ultracold atomic systems can be used to detect it. In this paper, we considered a recent experiment [1], where an atomic ensemble was cooled down to picokelvins. Any Brownian motion induces an extra increase of the position variance of the gas. We study this effect by solving the dynamical equations for the Continuous Spontaneous Localizations (CSL) model, as well as for its non-Markovian and dissipative extensions. The resulting bounds, with a 95% of confidence level, are beaten only by measurements of spontaneous X-ray emission and by experiments with cantilever (in the latter case, only for rC > 10^(-7) m, where rC is one of the two collapse parameters of the CSL model). We show that, contrary to the bounds given by X-ray measurements, non-Markovian effects do not change the bounds, for any reasonable choice of a frequency cutoff in the spectrum of the collapse noise. Therefore the bounds here considered are more robust. We also show that dissipative effects are unimportant for a large spectrum of temperatures of the noise, while for low temperatures the excluded region in the parameter space is the more reduced, the lower the temperature.Comment: 16 pages, 14 figure

    Zel'dovich amplification in a superconducting circuit

    Get PDF
    Zel'dovich proposed that electromagnetic (EM) waves with angular momentum reflected from a rotating metallic, lossy cylinder will be amplified. However, we are still lacking a direct experimental EM-wave verification of this fifty-year old prediction due to the challenging conditions in which the phenomenon manifests itself: the mechanical rotation frequency of the cylinder must be comparable with the EM oscillation frequency. Here we propose an experimental approach that solves this issue and is predicted to lead to a measurable Zel'dovich amplification with existing superconducting circuit technology. We design a superconducting circuit with low frequency EM modes that couple through free-space to a magnetically levitated and spinning micro-sphere placed at the center of the circuit. We theoretically estimate the circuit EM mode gain and show that rotation of the micro-sphere can lead to experimentally observable amplification, thus paving the way for the first EM-field experimental demonstration of Zel'dovich amplification.Comment: 16 pages, 8 figure

    Multilayer test masses to enhance the collapse noise

    Get PDF
    Recently, nonthermal excess noise, compatible with the theoretical prediction provided by collapse models, was measured in a millikelvin nanomechanical cantilever experiment [A. Vinante et al., Phys. Rev. Lett. 119, 110401 (2017)]. We propose a feasible implementation of the cantilever experiment able to probe such noise. The proposed modification, completely within the grasp of current technology and readily implementable also in other types of mechanical noninterferometric experiments, consists in replacing the homogeneous test mass with one composed of different layers of different materials. This will enhance the action of a possible collapse noise above that given by standard noise sources

    Testing spontaneous collapse through bulk heating experiments: estimate of the background noise

    Full text link
    Models of spontaneous wave function collapse predict a small heating rate for a bulk solid, as a result of coupling to the noise field that causes collapse. This rate is small enough that ambient radioactivity and cosmic ray flux on the surface of the earth can mask the heating due to spontaneous collapse. In this paper we estimate the background noise due to gamma-radiation and cosmic ray muon flux, at different depths. We demonstrate that a low-temperature underground experiment at a depth of about 6.5 km.w.e. would have a low enough background to allow detection of bulk heating for a collapse rate λ\lambda of 101610^{-16} s1^{-1} using presently available technology.Comment: v3: 11 pages, 9 figures, parts of the paper rewritten, no change in results, to appear in Phys. Rev.

    Detecting Acceleration-Enhanced Vacuum Fluctuations with Atoms Inside a Cavity

    Full text link
    Some of the most prominent theoretical predictions of modern times, e.g., the Unruh effect, Hawking radiation, and gravity-assisted particle creation, are supported by the fact that various quantum constructs like particle content and vacuum fluctuations of a quantum field are observer-dependent. Despite being fundamental in nature, these predictions have not yet been experimentally verified because one needs extremely strong gravity (or acceleration) to bring them within the existing experimental resolution. In this Letter, we demonstrate that a post-Newtonian rotating atom inside a far-detuned cavity experiences strongly modified quantum fluctuations in the inertial vacuum. As a result, the emission rate of an excited atom gets enhanced significantly along with a shift in the emission spectrum due to the change in the quantum correlation under rotation. We propose an optomechanical setup that is capable of realizing such acceleration-induced particle creation with current technology. This provides a novel and potentially feasible experimental proposal for the direct detection of noninertial quantum field theoretic effects.Comment: Published in PR

    Non-interferometric test of the Continuous Spontaneous Localization model based on rotational optomechanics

    Get PDF
    The Continuous Spontaneous Localization (CSL) model is the best known and studied among collapse models, which modify quantum mechanics and identify the fundamental reasons behind the unobservability of quantum superpositions at the macroscopic scale. Albeit several tests were performed during the last decade, up to date the CSL parameter space still exhibits a vast unexplored region. Here, we study and propose an unattempted non-interferometric test aimed to fill this gap. We show that the angular momentum diffusion predicted by CSL heavily constrains the parametric values of the model when applied to a macroscopic object
    corecore