3 research outputs found

    Producing Omega-3 Polyunsaturated Fatty Acids: A Review of Sustainable Sources and Future Trends for the EPA and DHA Market

    Get PDF
    Omega-3 polyunsaturated fatty acids (Omega-3 PUFA) are recognized as being essential compounds for human nutrition and health. The human body generates only low levels of Omega-3 PUFA. Conventional sources of Omega-3 PUFA are from marine origin. However, the global growth of population combined with a better consumer understanding about healthy nutrition leads to the fact that traditional sources are exhausted and therefore not enough to satisfy the demand of Omega-3 PUFA for human diet as well as aquaculture. Microalgae cultivated under heterotrophic conditions is increasingly recognized as a suitable technology for the production of the Omega-3 PUFA. The high cost of using glucose as main carbon source for cultivation is the main challenge to establish economical feasible production processes. The latest relevant studies provide alternative pathways for Omega-3 PUFA production. As preliminary results show, volatile fatty acids (VFA) recovered from waste stream could be a good alternative to the use of glucose as carbon source in microalgae cultivation. The purpose of this paper is to highlight the actual situation of Omega-3 PUFA production, sources and market request to provide a summary on sustainable sources that are being investigated as well as present and future market trends in Omega-3 market.The authors would like to thank the European project VOLATILE. The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 720777

    Fast Electrochemical Measurement of Laccase Activity for Monitoring Grapes’ Infection with Botrytis cinerea

    Get PDF
    Grapes’ infection with the fungi Botrytis cinerea is one of the major causes of economic loss in the winemaking sector worldwide. The laccase activity of grapes is considered an appropriate indicator of this type of fungal infection, and enzymatic activity higher than 3 U/mL indicates a high risk of irreversibly damaged grape must due to enzymatic browning. This work describes a fast test for the measurement of laccase activity based on a dual optical and electrochemical detection method. A paper sensor impregnated with the enzymatic substrate dye 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) provides a semi-quantitative optical measurement. While the paper sensor can be used independently, when combined with a screen-printed electrode and amperometry measurements, it enables the quantitative detection of laccase activities down to 0.4 U/mL in only 5 min. The method was applied for monitoring the artificial infection of white, rosé, and red grapes with different strains of Botrytis cinerea. The results were confirmed by parallel analysis using the spectrophotometric method of laccase activity determination based on syringaldazine. The influence of the fungal strain and type of grape on laccase activity levels is reported. The demonstrated robustness, simplicity, and versatility of the developed method make it ideal for application on-site in the vineyard or at grape processing points.Financial support provided by the Romanian Executive Agency for Higher Education, Research, Development and Innovation (UEFISCDI), ERANET-MANUNET-III-WINBIOTOOL-2, contract 151/9.03.2020 grant (for A.V), contract150/9.03.2020 (for P.E) and contract 152/9.03.2020 (for C.P. (Catalina Pantazi), E.B., and M.I.); the Romanian Academy grant RO1567-IBB05/2021 (for R.R. and C.P. (Cristina Purcarea)); the Basque Government and the European Union through the European regional development fund 2014–2020 (FEDER) (ZL-2020/00532 and ZL-2021/00340); and the Diputación Foral de Álava (ALAVA INNOVA program—INNOEM-2020/00045) for Bodegas de los Herederos del Marqués de Riscal; and the Diputación Foral de Álava (ALAVA INNOVA program— INNOEM-2020/00045) for Bodegas de los Herederos del Marqués de Risca is gratefully acknowledged

    Towards a Circular Bioeconomy. VOLATILE FATTY ACID PLATFORM FOR BIOWASTE RECYCLING

    Get PDF
    Resources in general are not infinitely available, and also renewable resources if consumed outside their normal replacement cycles become scarce. Therefore, the establishment of a circular bioeconomy must respect natural systems and replacement cycles of organic carbon thereby reducing environmental pressure of human consumption. Upcycling of side and biowaste streams towards added value compounds represents hereby a critical aspect reducing land system change and fertilizer use for biomass supply for the bioeconomy. The development of a Volatile Fatty Acids Platform (VFAP) represents an important cornerstone for the upcycling of heterogenous municipal biowaste streams.This e-book was prepared in the context of the EU funded project VOLATILE in accordance with the grant agreement No 720777 (European Union’s Horizon 2020 research and innovation programme)
    corecore