1,213 research outputs found

    Plant diversity, diet selection and animal production

    Get PDF
    Desde mucho tiempo los ecólogos han estado interesados en comprender el rol de la diversidad vegetal en el funcionamiento y en la estabilidad de los ecosistemas. Mucho menos atención se le ha prestado al rol de la diversidad vegetal en la selección de la dieta y la producción animal, lo cual constituye el motivo de la presente revisión. En condiciones naturales los herbívoros mamíferos tienden a consumir una amplia diversidad de especies. Una dieta variada, integrada por especies con distinta concentración de nutrientes y toxinas, permitiría satisfacer mejor los requerimientos nutricionales y evitar intoxicaciones y/o trastornos metabólicos (Ej., exceso de ácidos orgánicos o de amoníaco en el rumen). Existe evidencia consistente con la hipótesis que los animales aprenden a integrar sus dietas con alimentos que se complementan nutritivamente. También existe evidencia consistente con la hipótesis que los animales pueden aprender a integrar sus dietas con alimentos de distinta palatabilidad, cuando se fuerza inicialmente el consumo simultáneo de los mismos a los efectos de posibilitar una experiencia nutricional positiva con los alimentos de menor palatabilidad. A partir del conocimiento disponible resulta posible predecir un efecto beneficioso de la diversidad vegetal sobre la producción animal (por individuo y/o por unidad de superficie). El incremento por individuo y por unidad de superficie cabría esperarlo cuando las especies disponibles en la comunidad se complementan nutritivamente. En tanto un incremento por unidad de superficie sería esperable cuando los animales aprenden a integrar sus dietas con especies de alta y baja palatabilidad, realizando una utilización más uniforme de las especies presentes en la comunidad.Since long time ago ecologist has been interested in understanding the influences of plant diversity on ecosystem functioning and stability. Much less attention has received the role of plant diversity on diet selection and animal production, which constitute the aim of the present revision. Under natural conditions mammalian herbivores tend to consume a wide diversity of species. A varied diet, composed of species differing in nutrient and toxin concentrations, may allow to better met nutritional requirements and avoid toxicity and/or metabolic disorders (e.g., excess of organic acids or ammonia in the rumen). Existing evidence is consistent with the hypothesis that animals learn to integrate their diets with nutritionally complementary foods. There is also evidence that support the hypothesis that animals can learn to integrate their diets with foods of different palatability, when they are initially forced to mix them to allow a positive nutritional experience with foods of low palatability. From existing knowledge it is possible to predict a positive influence of plant diversity on animal production (per individual and/or per unit area). The increase per individual and per unit area should be expected when species are nutritionally complementary, whereas an increase per unit area should be expected when animals learn to integrate their diet with palatable and unpalatable species, leading to a more uniform use of plants in a community.Fil: Distel, Roberto Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Villalba, Juan Jose. University of Utah; Estados Unido

    Designing Diverse Agricultural Pastures for Improving Ruminant Production Systems

    Get PDF
    Pasture-based production systems represent a significant sustainable supplier of animal source foods worldwide. For such systems, mounting evidence highlights the importance of plant diversity on the proper functioning of soils, plants and animals. A diversity of forages and biochemicals –primary and secondary compounds- at appropriate doses and sequences of ingestion, may lead to benefits to the animal and their environment that are greater than grazing monocultures and the isolated effects of single chemicals. Here we review the importance of plant and phytochemical diversity on animal nutrition, welfare, health, and environmental impact while exploring some novel ideas about pasture design and management based on the biochemical complexity of traditional and non-traditional forage sources. Such effort will require an integration and synthesis on the morphology, ecophysiology, and biochemistry of traditional and non-traditional forage species, as well as on the foraging behavior of livestock grazing diverse pasturelands. Thus, the challenge ahead entails selecting the “right” species combination, spatial aggregation, distribution and management of the forage resource such that productivity and stability of plant communities and ecological services provided by grazing are enhanced. We conclude that there is strong experimental support for replacing simple traditional agricultural pastures of reduced phytochemical diversity with multiple arrays of complementary forage species that enable ruminants to select a diet in benefit of their nutrition, health and welfare, whilst reducing the negative environmental impacts caused by livestock production systems.Fil: Distel, Roberto Alejandro. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Arroquy, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Cesareo Naredo.; ArgentinaFil: Lagrange, Sebastián. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina. State University of Utah; Estados UnidosFil: Villalba, Juan Jose. State University of Utah; Estados Unido

    Dietary learning in domestic ruminants. Implications for animal production

    Get PDF
    La producción animal clásica considera a los animales simplemente como un factor de producción más, sin tener en cuenta la capacidad de aprendizaje de los mismos. En el presente trabajo revisamos la teoría y la evidencia del aprendizaje dietario en rumiantes domésticos, y deducimos implicancias prácticas para la producción animal. Durante la gestación y la lactancia los animales experimentan (a través de la placenta y de la leche) los sabores de los alimentos consumidos por sus madres, desarrollando preferencias por los mismos. Luego aprenden observando modelos sociales, principalmente a la madre, y por experiencia propia. Los animales son capaces de asociar las características sensoriales de los alimentos (olor, sabor, aspecto visual) con las consecuencias de su ingestión, y desarrollar preferencias o aversiones en función de la utilidad (aporte de nutrientes requeridos) o del peligro (aporte de toxinas) que los mismos representan. Pero las preferencias y aversiones por los alimentos no son únicas, sino relativas al estado de homeostasis interna del animal (déficit o exceso de nutrientes, exceso de toxinas) y a las alternativas alimentarias disponibles, lo cual explica la dinámica de la selección de la dieta y el requerimiento de diversidad para satisfacer necesidades nutricionales. Numerosas predicciones de la teoría del aprendizaje dietario han sido corroboradas mediante observación y experimentación, y constituyen motivo de análisis y discusión en el presente trabajo. Finalmente, del marco conceptual desarrollado se deducen implicancias prácticas que podrían contribuir a mejorar la producción y el bienestar animal.Traditional animal production systems consider animals just as simple production factor, without considering their learning abilities. In the present work we review the theory and evidence of dietary learning in domestic ruminants, and deduce practical implications for animal production. During gestation and lactation animals experience (through placenta or milk) the flavors of foods consumed by their mothers, and develop preference for them. Later in life they learn by observing social models –particularly mother- and by individual experience. Animals are able to associate the sensory properties of food (odor, taste, visual aspect) with post-ingestive consequences, and to develop preference or aversion as a function of their utility or danger. However, preferences and aversions for foods are not unique but relative to animal’s internal homeostasis status (deficit or excess of nutrients, excess of toxins) and to food alternatives available for ingestion, which explain the dynamic of diet selection and the requirement of diversity to satisfy nutritional needs. Numerous predictions from dietary learning theory have been supported by observations and experimentation, and are motive of analysis and discussion in present work. Finally, from the developed conceptual framework we deduced practical implications which would contribute to improve animal welfare and productivity.Fil: Distel, Roberto Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; ArgentinaFil: Catanese, Francisco Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; ArgentinaFil: Villalba, Juan Jose. State University Of Utah; Estados Unido

    Analysis of repoductive seasonality in Entrepelado and Retinto Iberian pig varieties under intensive management

    Full text link
    [EN] Seasonal patterns in the farrowing distribution of two Iberian pig varieties (Retinto and Entrepelado) and its environmental and genetic sources of variation were analyzed within the context of a von Mises circular mixed model solved through Bayesian inference. Estimates about the dispersion parameter supported a low seasonal pattern for both Entrepelado and Retinto varieties with the farrowing peak located between March and April. Nevertheless, seasonality was corroborated by the deviance information criterion when comparing against a uniform circular model by the deviance information criterion (DIC); the uniform model increased more than 100 DIC units in both Iberian pig varieties. Regarding systematic effects, only the parity number of the sow had a relevant impact on farrowing distribution, advancing the farrowing peak in gilts and old sows. Genetic variability was only suggested in the Retinto population although with a small estimate, which would indicate little chance to modify farrowing distribution by genetic selection in the Iberian pig.Research supported by projects CGL2016-80155-R and IDI20170304, and a fellowship granted to M. Martin de Hijas-Villalba (BES-2017-080596) by Spain's Ministerio de Economia y Competitividad.Martin De Hijas-Villalba, M.; Varona, L.; Ibáñez-Escriche, N.; Pablo Rosas, J.; Luis Noguera, J.; Casellas, J. (2021). Analysis of repoductive seasonality in Entrepelado and Retinto Iberian pig varieties under intensive management. Livestock Science. 245:1-4. https://doi.org/10.1016/j.livsci.2021.1044411424

    Maternal Transmission Ratio Distortion in two Iberian pig varieties

    Get PDF
    [EN] Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in the Entrepelado variety and 24 in the Retinto variety (q < 0.05), with mostly negative TRD values, increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs. No strong evidence of biological effects was found in genes with TRDLs. However, some biological processes could be affected by TRDLs, such as embryogenesis at different levels and lipid metabolism. These findings could provide useful insight into the genetic mechanisms to improve the swine industry, particularly in traditional breeds.The Spanish Government funded this research, grants number CGL2016-80155-R, and IDI-20170304Vazquez-Gomez, M.; Martín De Hijas-Villalba, M.; Varona, L.; Ibáñez-Escriche, N.; Rosas, JP.; Negro, S.; Noguera, JL.... (2020). Maternal Transmission Ratio Distortion in two Iberian pig varieties. Genes. 11(9):1-18. https://doi.org/10.3390/genes11091050S118119Lyttle, T. W. (1991). SEGREGATION DISTORTERS. Annual Review of Genetics, 25(1), 511-581. doi:10.1146/annurev.ge.25.120191.002455Silver, L. M. (1993). The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends in Genetics, 9(7), 250-254. doi:10.1016/0168-9525(93)90090-5Paz-Miguel, J. E., Pardo-Manuel de Villena, F., Sánchez-Velasco, P., & Leyva-Cobián, F. (2001). H2-haplotype-dependent unequal transmission of the 17 16 translocation chromosome from Ts65Dn females. Mammalian Genome, 12(1), 83-85. doi:10.1007/s003350010225Meyer, W. K., Arbeithuber, B., Ober, C., Ebner, T., Tiemann-Boege, I., Hudson, R. R., & Przeworski, M. (2012). Evaluating the Evidence for Transmission Distortion in Human Pedigrees. Genetics, 191(1), 215-232. doi:10.1534/genetics.112.139576Liu, Y., Zhang, L., Xu, S., Hu, L., Hurst, L. D., & Kong, X. (2013). Identification of Two Maternal Transmission Ratio Distortion Loci in Pedigrees of the Framingham Heart Study. Scientific Reports, 3(1). doi:10.1038/srep02147Wu, G., Hao, L., Han, Z., Gao, S., Latham, K. E., de Villena, F. P.-M., & Sapienza, C. (2005). Maternal Transmission Ratio Distortion at the Mouse Om Locus Results From Meiotic Drive at the Second Meiotic Division. Genetics, 170(1), 327-334. doi:10.1534/genetics.104.039479Solignac, M., Vautrin, D., Baudry, E., Mougel, F., Loiseau, A., & Cornuet, J.-M. (2004). A Microsatellite-Based Linkage Map of the Honeybee, Apis mellifera L. Genetics, 167(1), 253-262. doi:10.1534/genetics.167.1.253Vongs, A., Kakutani, T., Martienssen, R. A., & Richards, E. J. (1993). Arabidopsis thaliana DNA Methylation Mutants. Science, 260(5116), 1926-1928. doi:10.1126/science.8316832Koide, Y., Onishi, K., Nishimoto, D., Baruah, A. R., Kanazawa, A., & Sano, Y. (2008). Sex‐independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytologist, 179(3), 888-900. doi:10.1111/j.1469-8137.2008.02490.xWAKASUGI, N. (1974). A GENETICALLY DETERMINED INCOMPATIBILITY SYSTEM BETWEEN SPERMATOZOA AND EGGS LEADING TO EMBRYONIC DEATH IN MICE. Reproduction, 41(1), 85-96. doi:10.1530/jrf.0.0410085Agulnik, S. I., Agulnik, A. I., & Ruvinsky, A. O. (1990). Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genetical Research, 55(2), 97-100. doi:10.1017/s0016672300025325Dyer, K. A., Charlesworth, B., & Jaenike, J. (2007). Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proceedings of the National Academy of Sciences, 104(5), 1587-1592. doi:10.1073/pnas.0605578104Fishman, L., & McIntosh, M. (2019). Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annual Review of Genetics, 53(1), 347-372. doi:10.1146/annurev-genet-112618-043905Huang, L. O., Labbe, A., & Infante-Rivard, C. (2012). Transmission ratio distortion: review of concept and implications for genetic association studies. Human Genetics, 132(3), 245-263. doi:10.1007/s00439-012-1257-0Lorieux, M., Goffinet, B., Perrier, X., de León, D. G., & Lanaud, C. (1995). Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theoretical and Applied Genetics, 90(1), 73-80. doi:10.1007/bf00220998Philipsen, M., & Kristensen, B. (2009). Preliminary evidence of segregation distortion in the SLA system. Animal Blood Groups and Biochemical Genetics, 16(2), 125-133. doi:10.1111/j.1365-2052.1985.tb01460.xJeon, J.-T., Carlborg, Ö., Törnsten, A., Giuffra, E., Amarger, V., Chardon, P., … Andersson, L. (1999). A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics, 21(2), 157-158. doi:10.1038/5938Pinton, A., Calgaro, A., Bonnet, N., Ferchaud, S., Billoux, S., Dudez, A. M., … Ducos, A. (2009). Influence of sex on the meiotic segregation of a t(13;17) Robertsonian translocation: a case study in the pig. Human Reproduction, 24(8), 2034-2043. doi:10.1093/humrep/dep118Casellas, J., Manunza, A., Mercader, A., Quintanilla, R., & Amills, M. (2014). A Flexible Bayesian Model for Testing for Transmission Ratio Distortion. Genetics, 198(4), 1357-1367. doi:10.1534/genetics.114.169607Casellas, J., Gularte, R. J., Farber, C. R., Varona, L., Mehrabian, M., Schadt, E. E., … Medrano, J. F. (2012). Genome Scans for Transmission Ratio Distortion Regions in Mice. Genetics, 191(1), 247-259. doi:10.1534/genetics.111.135988Shendure, J., Melo, J. A., Pociask, K., Derr, R., & Silver, L. M. (1998). Sex-restricted non-Mendelian inheritance of mouse Chromosome 11 in the offspring of crosses between C57BL/6J and (C57BL/6J × DBA/2J)F 1 mice. Mammalian Genome, 9(10), 812-815. doi:10.1007/s003359900872Huang, L. O., Infante-Rivard, C., & Labbe, A. (2016). Analysis of Case-Parent Trios Using a Loglinear Model with Adjustment for Transmission Ratio Distortion. Frontiers in Genetics, 7. doi:10.3389/fgene.2016.00155Lopez-Bote, C. (1998). Sustained Utilization of the Iberian Pig Breed. Meat Science, 49, S17-S27. doi:10.1016/s0309-1740(98)00072-2Ibáñez-Escriche, N., Varona, L., Magallón, E., & Noguera, J. L. (2014). Crossbreeding effects on pig growth and carcass traits from two Iberian strains. Animal, 8(10), 1569-1576. doi:10.1017/s1751731114001712Esteve-Codina, A., Kofler, R., Himmelbauer, H., Ferretti, L., Vivancos, A. P., Groenen, M. A. M., … Pérez-Enciso, M. (2011). Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity, 107(3), 256-264. doi:10.1038/hdy.2011.13Vázquez-Gómez, M., García-Contreras, C., Astiz, S., Torres-Rovira, L., Fernández-Moya, E., Olivares, Á., … Isabel, B. (2020). Piglet birthweight and sex affect growth performance and fatty acid composition in fatty pigs. Animal Production Science, 60(4), 573. doi:10.1071/an18254Laval, G., Iannuccelli, N., Legault, C., Milan, D., Groenen, M. A., Giuffra, E., … Ollivier, L. (2000). Genetic diversity of eleven European pig breeds. Genetics Selection Evolution, 32(2), 187. doi:10.1186/1297-9686-32-2-187Fabuel, E., Barragán, C., Silió, L., Rodríguez, M. C., & Toro, M. A. (2004). Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity, 93(1), 104-113. doi:10.1038/sj.hdy.6800488Alonso, I., Ibáñez-Escriche, N., Noguera, J. L., Casellas, J., Martín de Hijas-Villalba, M., Gracia-Santana, M. J., & Varona, L. (2020). Genomic differentiation among varieties of Iberian pig. Spanish Journal of Agricultural Research, 18(1), e0401. doi:10.5424/sjar/2020181-15411Ibáñez-Escriche, N., Magallón, E., Gonzalez, E., Tejeda, J. F., & Noguera, J. L. (2016). Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines1. Journal of Animal Science, 94(1), 28-37. doi:10.2527/jas.2015-9433Pena, R. N., Noguera, J. L., García-Santana, M. J., González, E., Tejeda, J. F., Ros-Freixedes, R., & Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 9(1). doi:10.1038/s41598-019-38622-7Noguera, J. L., Ibáñez-Escriche, N., Casellas, J., Rosas, J. P., & Varona, L. (2019). Genetic parameters and direct, maternal and heterosis effects on litter size in a diallel cross among three commercial varieties of Iberian pig. Animal, 13(12), 2765-2772. doi:10.1017/s1751731119001125Casellas, J., Ibáñez-Escriche, N., Varona, L., Rosas, J. P., & Noguera, J. L. (2019). Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties1. Journal of Animal Science, 97(5), 1979-1986. doi:10.1093/jas/skz084Weinberg, C. R., Wilcox, A. J., & Lie, R. T. (1998). A Log-Linear Approach to Case-Parent–Triad Data: Assessing Effects of Disease Genes That Act Either Directly or through Maternal Effects and That May Be Subject to Parental Imprinting. The American Journal of Human Genetics, 62(4), 969-978. doi:10.1086/301802Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.xHaider, S., Ballester, B., Smedley, D., Zhang, J., Rice, P., & Kasprzyk, A. (2009). BioMart Central Portal—unified access to biological data. Nucleic Acids Research, 37(suppl_2), W23-W27. doi:10.1093/nar/gkp265Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2016). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45(D1), D183-D189. doi:10.1093/nar/gkw1138McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) https://omim.org/Sydney School of Veterinary Science https://omia.org/Kristensen, T. N., & Sørensen, A. C. (2005). Inbreeding – lessons from animal breeding, evolutionary biology and conservation genetics. Animal Science, 80(2), 121-133. doi:10.1079/asc41960121Bosse, M., Megens, H.-J., Madsen, O., Paudel, Y., Frantz, L. A. F., Schook, L. B., … Groenen, M. A. M. (2012). Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape. PLoS Genetics, 8(11), e1003100. doi:10.1371/journal.pgen.1003100Silió, L., Rodríguez, M. C., Fernández, A., Barragán, C., Benítez, R., Óvilo, C., & Fernández, A. I. (2013). Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics. Journal of Animal Breeding and Genetics, 130(5), 349-360. doi:10.1111/jbg.12031Eaves, I. A., Bennett, S. T., Forster, P., Ferber, K. M., Ehrmann, D., Wilson, A. J., … Todd, J. A. (1999). Transmission ratio distortion at the INS-IGF2 VNTR. Nature Genetics, 22(4), 324-325. doi:10.1038/11890De Villena, F., & Sapienza, C. (2001). Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Human Genetics, 108(1), 31-36. doi:10.1007/s004390000437Saura, M., Fernández, A., Varona, L., Fernández, A. I., de Cara, M., Barragán, C., & Villanueva, B. (2015). Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 47(1), 1. doi:10.1186/s12711-014-0081-5Hunt, S. E., McLaren, W., Gil, L., Thormann, A., Schuilenburg, H., Sheppard, D., … Cunningham, F. (2018). Ensembl variation resources. Database, 2018. doi:10.1093/database/bay119Kido, T., Sikora-Wohlfeld, W., Kawashima, M., Kikuchi, S., Kamatani, N., Patwardhan, A., … Butte, A. J. (2018). Are minor alleles more likely to be risk alleles? BMC Medical Genomics, 11(1). doi:10.1186/s12920-018-0322-5Balick, D. J., Do, R., Cassa, C. A., Reich, D., & Sunyaev, S. R. (2015). Dominance of Deleterious Alleles Controls the Response to a Population Bottleneck. PLOS Genetics, 11(8), e1005436. doi:10.1371/journal.pgen.1005436Plough, L. V., & Hedgecock, D. (2011). Quantitative Trait Locus Analysis of Stage-Specific Inbreeding Depression in the Pacific Oyster Crassostrea gigas. Genetics, 189(4), 1473-1486. doi:10.1534/genetics.111.131854Xu, S. (2008). Quantitative Trait Locus Mapping Can Benefit From Segregation Distortion. Genetics, 180(4), 2201-2208. doi:10.1534/genetics.108.090688Id-Lahoucine, S., Cánovas, A., Jaton, C., Miglior, F., Fonseca, P. A. S., Sargolzaei, M., … Casellas, J. (2019). Implementation of Bayesian methods to identify SNP and haplotype regions with transmission ratio distortion across the whole genome: TRDscan v.1.0. Journal of Dairy Science, 102(4), 3175-3188. doi:10.3168/jds.2018-15296Schulz, R., Underkoffler, L. A., Collins, J. N., & Oakey, R. J. (2006). Nondisjunction and transmission ratio distortion ofChromosome 2 in a (2.8) Robertsonian translocation mouse strain. Mammalian Genome, 17(3), 239-247. doi:10.1007/s00335-005-0126-8Eversley, C. D., Clark, T., Xie, Y., Steigerwalt, J., Bell, T. A., de Villena, F. P., & Threadgill, D. W. (2010). Genetic mapping and developmental timing of transmission ratio distortion in a mouse interspecific backcross. BMC Genetics, 11(1). doi:10.1186/1471-2156-11-98Rugg-Gunn, P. J., Cox, B. J., Ralston, A., & Rossant, J. (2010). Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proceedings of the National Academy of Sciences, 107(24), 10783-10790. doi:10.1073/pnas.0914507107Canovas, S., & Ross, P. J. (2016). Epigenetics in preimplantation mammalian development. Theriogenology, 86(1), 69-79. doi:10.1016/j.theriogenology.2016.04.020Jambhekar, A., Dhall, A., & Shi, Y. (2019). Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology, 20(10), 625-641. doi:10.1038/s41580-019-0151-1Gonzalez-Bulnes, A., Astiz, S., Ovilo, C., Lopez-Bote, C. J., Torres-Rovira, L., Barbero, A., … Vazquez-Gomez, M. (2016). Developmental Origins of Health and Disease in swine: implications for animal production and biomedical research. Theriogenology, 86(1), 110-119. doi:10.1016/j.theriogenology.2016.03.024Ishibashi, Y., Kohyama-Koganeya, A., & Hirabayashi, Y. (2013). New insights on glucosylated lipids: Metabolism and functions. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(9), 1475-1485. doi:10.1016/j.bbalip.2013.06.00

    Pathological changes of renal biopsy in Sjögren Syndrome

    Get PDF
    We are presenting the case of a 53-year-old woman with a history of Sjögren syndrome and a secondary antiphospholipid syndrome admitted at the Nephrology department for the evaluation of renal failure. The patient was initially diagnosed with tubulointerstitial nephritis and subsequently a membranoproliferative type I glomerulonephritis, secondary to cryoglobulins during the course of the disease. Repeated renal biopsies were required to confirm the diagnosis

    Large-Scale Temperature Changes across the Southern Andes: 20th-Century Variations in the Context of the Past 400 Years

    Get PDF
    Long-term trends of temperature variations across the southern Andes (37–55° S) are examined using a combination of instrumental and tree-ring records. A critical appraisal of surface air temperature from station records is presented for southern South America during the 20th century. For the interval 1930–1990, three major patterns in temperature trends are identified. Stations along the Pacific coast between 37 and 43° S are characterized by negative trends in mean annual temperature with a marked cooling period from 1950 to the mid-1970s. A clear warming trend is observed in the southern stations (south of 46°S), which intensifies at higher latitudes. No temperature trends are detected for the stations on the Atlantic coast north of 45° S. In contrast to higher latitudes in the Northern Hemisphere where annual changes in temperature are dominated by winter trends, both positive and negative trends in southern South America are due to mostly changes in summer (December to February) temperatures. Changes in the Pacific Decadal Oscillation (PDO) around 1976 are felt in summer temperatures at most stations in the Pacific domain, starting a period with increased temperature across the southern Andes and at higher latitudes.Tree-ring records from upper-treeline were used to reconstruct past temperature fluctuations for the two dominant patterns over the southern Andes. These reconstructions extend back to 1640 and are based on composite tree-ring chronologies that were processed to retain as much low-frequency variance as possible. The resulting reconstructions for the northern and southern sectors of the southern Andes explain 55% and 45% ofthe temperature variance over the interval 1930–1989, respectively. Cross-spectral analysis of actual and reconstructed temperatures over the common interval 1930–1989, indicates that most of the explained varianceis at periods >10 years in length. At periods >15 years, the squaredcoherency between actual and reconstructed temperatures ranges between 0.6 and 0.95 for both reconstructions. Consequently, these reconstructions are especially useful for studying multi-decennial temperature variations in the South American sector of the Southern Hemisphere over the past 360 years. As a result, it is possible to show that the temperatures during the 20thcentury have been anomalously warm across the southern Andes. The mean annual temperatures for the northern and southern sectors during the interval 1900–1990 are 0.53 °C and 0.86 °C above the1640–1899 means, respectively. These findings placed the current warming in a longer historical perspective, and add new support for the existence of unprecedented 20th century warming over much of the globe. The rate of temperature increase from 1850 to 1920 was the highest over the past 360 years, a common feature observed in several proxy records from higher latitudes in the Northern Hemisphere.Local temperature regimes are affected by changes in planetary circulation, with in turn are linked to global sea surface temperature (SST) anomalies. Therefore, we explored how temperature variations in the southern Andes since 1856 are related to large-scale SSTs on the South Pacific and South Atlantic Oceans. Spatial correlation patterns between the reconstructions and SSTs show that temperature variations in the northern sector of the southern Andes are strongly connected with SST anomalies in the tropical and subtropical Pacific. This spatial correlation pattern resembles the spatial signature of the PDO mode of SST variability over the South Pacific and is connected with the Pacific-South American (PSA) atmospheric pattern in the Southern Hemisphere. In contrast, temperature variations in the southern sector of the southern Andes are significantly correlated with SST anomalies over most of the South Atlantic, and in less degree, over the subtropical Pacific. This spatial correlation field regressed against SST resembles the `Global Warming' mode of SST variability, which in turn, is linked to the leading mode of circulation in the Southern Hemisphere. Certainly, part of the temperature signal present in the reconstructions can be expressed as a linear combination of four orthogonal modes of SST variability. Rotated empirical orthogonal function analysis, performed on SST across the South Pacific and South Atlantic Oceans, indicate that four discrete modes of SST variability explain a third, approximately, of total variance in temperature fluctuations across the southern Andes.Fil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Lara, Antonio. Universidad Austral de Chile; ChileFil: Boninsegna, Jose Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Masiokas, Mariano Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Delgado, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Aravena, Juan C.. Universidad de Chile; ChileFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Schmelter, Andrea. Universitaet Bonn; AlemaniaFil: Wolodarsky, Alexia. Universidad Austral de Chile; ChileFil: Ripalta, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentin

    a cross-sectional study

    Get PDF
    Publisher Copyright: Copyright © 2023 Gonzalez Delgado, Cortes Gil, Rodriguez Araujo, Mira Solves, Rodriguez Gallo, Salcedo Monsalve, Arrieta Arteta, Villalba Toquica and Morales Ruiz.Objectives: Analyze the presence of acute stress response after adverse events in human talent in Colombian health institutions from 2017 to 2021. Methods: Cross-sectional study of prevalence, carried out on 838 members of the human talent in health (professionals, technicians, technologists, and auxiliaries) of Colombian health institutions in the study period with the application of the EASE instrument. Univariate analysis using descriptive statistical techniques, chi-square and Student’s t-test, and bivariate analysis with a Poisson regression model using the institucional SPSS v. 26. Results: The prevalence of adverse events in the last 5 years was 33.8%, presenting levels of acute stress qualifying as Medium-high emotional overload at 21.91%, while extreme acute stress was at 3.53%. The prevalence of risk for presenting acute stress after being involved in an adverse event was PR: 1.30 (CI: 1.24–1.36). Conclusion: Acute stress in human talent after adverse events is limiting health and care capacity and must be efficiently addressed by health institutions. Psychosocial risk is linked within the framework of the patient safety program and the institutional occupational health and safety management systems.publishersversionpublishe

    Detecting Cryptojacking Web Threats: An Approach with Autoencoders and Deep Dense Neural Networks

    Get PDF
    With the growing popularity of cryptocurrencies, which are an important part of day-to-day transactions over the Internet, the interest in being part of the so-called cryptomining service has attracted the attention of investors who wish to quickly earn profits by computing powerful transactional records towards the blockchain network. Since most users cannot afford the cost of specialized or standardized hardware for mining purposes, new techniques have been developed to make the latter easier, minimizing the computational cost required. Developers of large cryptocurrency houses have made available executable binaries and mainly browser-side scripts in order to authoritatively tap into users’ collective resources and effectively complete the calculation of puzzles to complete a proof of work. However, malicious actors have taken advantage of this capability to insert malicious scripts and illegally mine data without the user’s knowledge. This cyber-attack, also known as cryptojacking, is stealthy and difficult to analyze, whereby, solutions based on anti-malware extensions, blocklists, JavaScript disabling, among others, are not sufficient for accurate detection, creating a gap in multi-layer security mechanisms. Although in the state-of-the-art there are alternative solutions, mainly using machine learning techniques, one of the important issues to be solved is still the correct characterization of network and host samples, in the face of the increasing escalation of new tampering or obfuscation techniques. This paper develops a method that performs a fingerprinting technique to detect possible malicious sites, which are then characterized by an autoencoding algorithm that preserves the best information of the infection traces, thus, maximizing the classification power by means of a deep dense neural network

    In vivo and In vitro cartilage differentiation from embryonic epicardial progenitor cells

    Get PDF
    The presence of cartilage tissue in embryonic and adult hearts of various vertebrate species is a well-recorded fact. However, while the embryonic neural crest has been historically considered as the main source of cardiac cartilage, recently reported results on the wide connective potential of epicardial lineage cells suggest they could also differentiate into chondrocytes. During heart embryogenesis, the epicardial epithelium forms over the originally bare myocardial surface from epicardial progenitor (proepicardial) cells to then give rise to a large population of mesenchymal Epicardial-Derived Cells (EPDCs) that will crucially contribute to the building, growth, and maturation of the ventricle and atrioventricular cardiac structures. In this work, we describe the formation of cardiac cartilage clusters from proepicardial cells, both in vivo and in vitro. Our findings report, for the first time, cartilage formation from epicardial progenitor cells in the embryonic heart, and strongly support the concept of proepicardial cells as multipotent connective progenitors. These results are relevant to our understanding of cardiac cell complexity and responses to pathologic stimuli.Universidad de Málaga (UMA18-FEDERJA-146). Campus de Excelencia Internacional Andalucía Tech; Ministerio de Educación (FPU18/05219); Ministerio de Ciencias (RTI2018-095410-B-I00); ISCIII-RETICs (RD16/0011/0030); Consejería de Salud y Familias, Junta de Andalucía (PIER-0084-2019) Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore