37 research outputs found

    Increased Secreted Amyloid Precursor Protein-α (sAPPα) in Severe Autism: Proposal of a Specific, Anabolic Pathway and Putative Biomarker

    Get PDF
    Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP

    Hirunorms, novel hirudin-like direct thrombin inhibitors

    No full text
    1. Hirunorms are new synthetic peptides designed to interact with thrombin in a similar way to the natural inhibitor hirudin. 2. Hirunorms are specific and efficient in vitro inhibitors of thrombin activity. 3. Hirunorms are potent anticoagulant and antithrombotic agents in in vivo experimental models devoid of hemorrhagic effects at doses that are active in preventing thrombosis. (C) 1998 Elsevier Science Inc

    Kinetics of human thrombin inhibition by two novel peptide inhibitors (Hirunorm IV and Hirunorm V).

    No full text
    A study on the kinetics of human thrombin inhibition by two novel synthetic peptides (Hirunorm IV and Hirunorm V) and a comparison with recombinant hirudin and a commonly used thrombin inhibitor, Hirulog-1, are reported. The dissociation constants for Hirunorm TV and Hirunorm V were determined by varying the concentration of inhibitors at fixed concentrations of the chromogenic substrate Chromozym-TH (N-tosylglycyl-L-prolyl-L-arginine 4-nitroanilide acetate). Both inhibitors behaved as reversible tight-binding inhibitors of amidolytic thrombin activity. The apparent dissociation constants determined showed a linear dependence on the concentration of substrate; this finding, which indicates that the inhibition was competitive, made possible the estimation of the dissociation constants (K-I) for Hirunorm IV and Hirunorm V, which were 0.134 +/- 0.014 nM and 0.245 +/- 0.016 nM, respectively. Similar dissociation constants were also obtained for the two inhibitors when thrombin activity was measured with fibrinogen in the clotting assay. When tested for resistance to thrombin proteolytic activity, both inhibitors were inviolate to cleavage by thrombin. The data obtained demonstrate that both Hirunorm IV and Hirunorm V are potent and stable inhibitors of human thrombin activity

    Occurrence of glutathione-modified aldose reductase in oxidatively stressed bovine lens.

    No full text
    The optimization of an affinity chromatography method on Matrex Orange resin allowed the separation of glutathione modified and native aldose reductase in crude extracts of bovine lens. The analysis of hyperbaric oxygen treated lenses revealed the formation in the intact cultured lens of an enzyme form displaying affinity column binding properties, specific activity, sensitivity to inhibition and susceptibility to activation by thiol reducing agents, all comparable to glutathione modified aldose reductase. The extent of the enzyme modification increased with the time of the oxidative treatment and was maximal in the lens nucleus. The relative increase of glutathione modified aldose reductase from cortex to the nucleus is consistent with the increase in these lens regions of the GSSG/GSH ratio. (C) 1995 Academic Press, Inc
    corecore