269 research outputs found
Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes
The engineered search for new catalysts requires a deep knowledge about reaction mechanisms. Here, with the support of a combination of computational and experimental results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by adatoms of the p block is elucidated for the first time. DFT calculations reveal that some adatoms, such as Bi and Pb, have positive partial charge when they are adsorbed on the bare surface, whereas others, such as Se and S, remain virtually neutral. When the partial charge is correlated with previously reported experimental results for the formic acid oxidation reaction, it is found that the partial positive charge is directly related to the increase in catalytic activity of the modified surface. Further, it is obtained that such a positive partial charge is directly proportional to the electronegativity difference between the adatom and Pt. Thus, the electronegativity difference can be used as an effective descriptor for the expected electrocatalytic activity. This partial positive charge on the adatom drives the formic acid oxidation reaction, since it favors the formation and adsorption of formate on the adatom. Once adsorbed, the neighboring platinum atoms assist in the CâH bond cleavage. Finally, it is found that most of the steps involved in the proposed oxidation mechanism are barrierless, which implies a significant diminution of the activation barriers in comparison to that of the unmodified Pt(111) electrode. This diminution in the activation barrier has been experimentally corroborated for the BiâPt(111) electrode, supporting the proposed mechanism.This work has been financially supported by the MINECO (Spain) (project CTQ2013-44083-P) and Generalitat Valenciana (project PROMETEOII/2014/013)
Projection to Latent Spaces Disentangles Pathological Effects on Brain Morphology in the Asymptomatic Phase of Alzheimer's Disease
Alzheimerâs disease (AD) continuum is defined as a cascade of several neuropathological
processes that can be measured using biomarkers, such as cerebrospinal fluid (CSF)
levels of AÎČ, p-tau, and t-tau. In parallel, brain anatomy can be characterized through
imaging techniques, such as magnetic resonance imaging (MRI). In this work we relate
both sets of measurements and seek associations between biomarkers and the brain
structure that can be indicative of AD progression. The goal is to uncover underlying
multivariate effects of AD pathology on regional brain morphological information. For this
purpose, we used the projection to latent structures (PLS) method. Using PLS, we found
a low dimensional latent space that best describes the covariance between both sets
of measurements on the same subjects. Possible confounder effects (age and sex) on
brain morphology are included in the model and regressed out using an orthogonal PLS
model. We looked for statistically significant correlations between brain morphology and
CSF biomarkers that explain part of the volumetric variance at each region-of-interest
(ROI). Furthermore, we used a clustering technique to discover a small set of CSF-related
patterns describing the AD continuum. We applied this technique to the study of subjects
in the whole AD continuum, from the pre-clinical asymptomatic stages all the way through
to the symptomatic groups. Subsequent analyses involved splitting the course of the
disease into diagnostic categories: cognitively unimpaired subjects (CU), mild cognitively
impaired subjects (MCI), and subjects with dementia (AD-dementia), where all symptoms
were due to AD
Extraction of Pure Entangled States from Many Body Systems by Distant Local Projections
We study the feasibility of extracting a pure entangled state of
non-complementary, and potentially well separated, regions of a quantum
many-body system. It is shown that this can indeed be accomplished in
non-equilibrium scenarios as well as the ground state of the considered spin
chain models when one locally measures observables such as magnetization in
separated blocks of spins. A general procedure is presented, which can search
for the optimal way to extract a pure entangled state through local
projections. Our results indicate a connection of the projective extraction of
entanglement to good quantum numbers of the underlying Hamiltonian.Comment: 7 pages, 5 figures. Comments welcom
Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases
Background: Previous studies have revealed that some Auxiliary Activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) oxidize and degrade certain types of xylans when incubated with mixtures of xylan and cellulose. Here, we demonstrate that the xylanolytic activities of two xylan-active LPMOs, TtLPMO9E and TtLPMO9G from Thermothielavioides terrestris, strongly depend on the presence of xylan substitutions. Results: Using mixtures of phosphoric acid-swollen cellulose (PASC) and wheat arabinoxylan (WAX), we show that removal of arabinosyl substitutions with a GH62 arabinofuranosidase resulted in better adsorption of xylan to cellulose, and enabled LPMO-catalyzed cleavage of this xylan. Furthermore, experiments with mixtures of PASC and arabinoglucuronoxylan from spruce showed that debranching of xylan with the GH62 arabinofuranosidase and a GH115 glucuronidase promoted LPMO activity. Analyses of mixtures with PASC and (non-arabinosylated) beechwood glucuronoxylan showed that GH115 action promoted LPMO activity also on this xylan. Remarkably, when WAX was incubated with\ua0Avicel instead of PASC in the presence of the GH62, both xylan and cellulose degradation by the LPMO9 were impaired, showing that the formation of celluloseâxylan complexes and their susceptibility to LPMO action also depend on the properties of the cellulose. These debranching effects not only relate to modulation of the celluloseâxylan interaction, which influences the conformation and rigidity of the xylan, but likely also affect the LPMOâxylan interaction, because debranching changes the architecture of the xylan surface. Conclusions: Our results shed new light on xylanolytic LPMO9 activity and on the functional interplay and possible synergies between the members of complex lignocellulolytic enzyme cocktails. These findings will be relevant for the development of future lignocellulolytic cocktails and biomaterials
Comparison of Six Lytic Polysaccharide Monooxygenases from Thermothielavioides terrestris Shows That Functional Variation Underlies the Multiplicity of LPMO Genes in Filamentous Fungi
Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that oxidatively degrade various polysaccharides. Genes encoding LPMOs in the AA9 family are abundant in filamentous fungi while their multiplicity remains elusive. We describe a detailed functional characterization of six AA9 LPMOs from the ascomycetous fungus Thermothielavioides terrestris LPH172 (syn. Thielavia terrestris). These six LPMOs were shown to be upregulated during growth on different lignocellulosic substrates in our previous study. Here, we produced them heterologously in Pichia pastoris and tested their activity on various model and native plant cell wall substrates. All six T. terrestris AA9 (TtAA9) LPMOs produced hydrogen peroxide in the absence of polysaccharide substrate and displayed peroxidase-like activity on a model substrate, yet only five of them were active on selected cellulosic substrates. TtLPMO9A and TtLPMO9E were also active on birch acetylated glucuronoxylan, but only when the xylan was combined with phosphoric acid-swollen cellulose (PASC). Another of the six AA9s, TtLPMO9G, was active on spruce arabinoglucuronoxylan mixed with PASC. TtLPMO9A, TtLPMO9E, TtLPMO9G, and TtLPMO9T could degrade tamarind xyloglucan and, with the exception of TtLPMO9T, beechwood xylan when combined with PASC. Interestingly, none of the tested enzymes were active on wheat arabinoxylan, konjac glucomannan, acetylated spruce galactoglucomannan, or cellopentaose. Overall, these functional analyses support the hypothesis that the multiplicity of the fungal LPMO genes assessed in this study relates to the complex and recalcitrant structure of lignocellulosic biomass. Our study also highlights the importance of using native substrates in functional characterization of LPMOs, as we were able to demonstrate distinct, previously unreported xylan-degrading activities of AA9 LPMOs using such substrates
A GH115 alpha-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan
Background: Lignocellulosic biomass from softwood represents a valuable resource for the production of biofuels and bio-based materials as alternatives to traditional pulp and paper products. Hemicelluloses constitute an extremely heterogeneous fraction of the plant cell wall, as their molecular structures involve multiple monosaccharide components, glycosidic linkages, and decoration patterns. The complete enzymatic hydrolysis of wood hemicelluloses into monosaccharides is therefore a complex biochemical process that requires the activities of multiple degradative enzymes with complementary activities tailored to the structural features of a particular substrate. Glucuronoarabinoxylan (GAX) is a major hemicellulose component in softwood, and its structural complexity requires more enzyme specificities to achieve complete hydrolysis compared to glucuronoxylans from hardwood and arabinoxylans from grasses. Results: We report the characterisation of a recombinant α-glucuronidase (Agu115) from Schizophyllum commune capable of removing (4-O-methyl)-glucuronic acid ((Me)GlcA) residues from polymeric and oligomeric xylan. The enzyme is required for the complete deconstruction of spruce glucuronoarabinoxylan (GAX) and acts synergistically with other xylan-degrading enzymes, specifically a xylanase (Xyn10C), an α-l-arabinofuranosidase (AbfA), and a ÎČ-xylosidase (XynB). Each enzyme in this mixture showed varying degrees of potentiation by the other activities, likely due to increased physical access to their respective target monosaccharides. The exo-acting Agu115 and AbfA were unable to remove all of their respective target side chain decorations from GAX, but their specific activity was significantly boosted by the addition of the endo-Xyn10C xylanase. We demonstrate that the proposed enzymatic cocktail (Agu115 with AbfA, Xyn10C and XynB) achieved almost complete conversion of GAX to arabinofuranose (Araf), xylopyranose (Xylp), and MeGlcA monosaccharides. Addition of Agu115 to the enzymatic cocktail contributes specifically to 25 % of the conversion. However, traces of residual oligosaccharides resistant to this combination of enzymes were still present after deconstruction, due to steric hindrances to enzyme access to the substrate. Conclusions: Our GH115 α-glucuronidase is capable of finely tailoring the molecular structure of softwood GAX, and contributes to the almost complete saccharification of GAX in synergy with other exo- and endo-xylan-acting enzymes. This has great relevance for the cost-efficient production of biofuels from softwood lignocellulose.Lauren S. McKee, Hampus Sunner, George E. Anasontzis, Guillermo Toriz, Paul Gatenholm, Vincent Bulone, Francisco Vilaplana and Lisbeth Olsso
An Aza-Fused pi-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide
"This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.html"[EN] In order to produce hydrogen peroxide in small-scale electrochemical plants, selective catalysts for the oxygen reduction reaction (ORR) toward the desired species are required. Here, we report about the synthesis, characterization, ORR electrochemical behavior, and reaction mechanism of an aza-fused pi-conjugated microporous polymer, which presents high selectivity toward hydrogen peroxide. It was synthesized by polycondensation of 1,2,4,5-benzenetetramine tetrahydrochloride and triquinoyl octahydrate. A cobalt-modified version of the material was also prepared by a simple postsynthesis treatment with a Co(II) salt. The characterization of the material is consistent with the formation of a conductive robust porous covalent laminar polyaza structure. The ORR properties of these catalysts were investigated using rotating disk and rotating disk ring arrangements. The results indicate that hydrogen peroxide is almost exclusively produced at very low overpotentials on these materials. Density functional theory calculations provide key elements to understand the reaction mechanism. It is found that, at the relevant potential for the reaction, half of the nitrogen atoms of the material would be hydrogenated. This hydrogenation process would destabilize some carbon atoms in the lattice and would provide segregated charge. On the destabilized carbon atoms, molecular oxygen would be chemisorbed with the aid of charge transferred from the hydrogenated nitrogen atoms and solvation effects. Due to the low destabilization of the carbon sites, the resulting molecular oxygen chemisorbed state, which would have the characteristics of a superoxide species, would be only slightly stable, promoting the formation of hydrogen peroxide.This work has been financially supported by the MCINN-FEDER (projects CTQ2016-76221-P, MAT2013-46753-C2-1-P, and MAT2014-52305-P) and Generalitat Valenciana (project PROMETEO/2014/013).Briega-Martos, V.; Ferre Vilaplana, A.; De La Peña, A.; Segura, J.; Zamora, F.; Feliu, J.; Herrero, E. (2017). An Aza-Fused pi-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catalysis. 7(2):1015-1024. https://doi.org/10.1021/acscatal.6b03043S101510247
Measurements and estimation of the columnar optical depth of tropospheric aerosols in the UV spectral region
International audienceWe report values of the columnar tropospheric aerosol optical depth at UV wavelengths based on experimental measurements of the direct spectral irradiances carried out by a commercial spectroradiometer (Li1800 of Licor company) covering the range from 300?1100 nm at two stations with different climate characteristics in Spain. The first station is located in a rural site in north central Spain with continental climate. The data extend from March to the end of October of 1995. The other station is a coastal site in the Gulf of CĂĄdiz (southwest Spain) of maritime climate type. This study is mainly focused on the capability of estimating aerosol optical depth values in the UV region based on the extracted information in the visible and near infrared ranges. A first method has been used based on the Ă
ngström turbidity parameters. However, since this method requires detailed spectral information, a second method has also been used, based on the correlation between wavelengths. A correlation has been established between the experimental aerosol optical depth values at 350 nm and 500 nm wavelengths. Although the type of aerosol seems to be the key factor that determines the quality of these estimations, the evaluation of the associated error is necessary to know the behaviour of these estimations in each area of study
Intercomparison of aerosol optical depth measurements in the UVB using Brewer Spectrophotometers and a Li-Cor Spectrophotometer
The first Iberian UV radiation intercomparison was held at âEl Arenosilloâ-Huelva station of the Instituto Nacional de TĂ©cnica Aeroespatial (INTA) from September 1 to 10, 1999. During this campaign, seven Brewer spectrophotometers and one Li-Cor spectrophotometer measured the total column aerosol optical depth (AOD) at 306, 310, 313.5, 316.75 and 320 nm. The AOD calibration of one Brewer was transferred to all other Brewers using one day of intensive measurements. The remaining days were used to observe the stability and reproducibility of the AOD measurements by the different instruments. All Brewer spectrophotometers agreed to within an AOD of 0.03 during the whole measurement campaign. The differences in AOD between the Li-Cor spectrophotometer and the Brewer spectrophotometers were between â0.07 and +0.02 at 313.5, 316.75, and 320 nm. This investigation demonstrates the possibility of using the existing worldwide Brewer network as a global UV aerosol network for AOD monitoring.The first Iberian UV radiation intercomparison was supported by the CICYT, project CLI97- 0345-C05-05 under the coordination of INM
- âŠ