25 research outputs found

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Policies for biosimilar uptake in Europe: An overview

    Get PDF
    markdownabstract__Background__ Across European countries, differences exist in biosimilar policies, leading to variations in uptake of biosimilars and divergences in savings all over Europe. __Objectives__ The aim of this article is to provide an overview of different initiatives and policies that may influence the uptake of biosimilars in different European countries. Recommendations will be formulated on how to create sustainable uptake. __Methods__ An overview of policies on biosimilars was obtained via a questionnaire, supplemented with relevant articles. Topics were organized in five themes: availability, pricing, reimbursement, demand-side policies, and recommendations to enhance uptake. __Results__ In all countries studied, biological medicines are available. Restrictions are mainly dependent on local organization of the healthcare system. Countries are willing to include biosimilars for reimbursement, but for commercial reasons they are not always marketed. In two thirds of countries, originator and biosimilar products may be subjected to internal reference pricing systems. Few countries have implemented specific incentives targeting physicians. Several countries are implementing pharmacist substitution; however, the scope and rules governing such substitution tend to vary between these countries. Reported educational policies tend to target primarily physicians, whereas fewer initiatives were reported for patients. Recommendations as proposed by the different country experts ranged from the need for information and communication on biosimilars to competitive pricing, more support for switching and guidance on substitution. __Conclusions__ Most countries have put in place specific supply-side policies for promoting access to biosimilars. To supplement these measures, we propose that investments should be made to clearly communicate on biosimilars and educate stakeholders. Especially physicians need to be informed on the entry and use of biosimilars in order to create trust. When physicians are well-informed on the treatment options, further incentives should be offered to prescribe biosimilars. Gainsharing can be used as an incentive to prescribe, dispense or use biosimilars. This approach, in combination with binding quota, may support a sustainable biosimilar market

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe

    Importance of Baseline Prognostic Factors With Increasing Time Since Initiation of Highly Active Antiretroviral Therapy: Collaborative Analysis of Cohorts of HIV-1-Infected Patients

    No full text
    Background: The extent to which the prognosis for AIDS and death of patients initiating highly active antiretroviral therapy (HAART) continues to be affected by their characteristics at the time of initiation (baseline) is unclear. Methods: We analyzed data on 20,379 treatment-naive HIV-1- infected adults who started HAART in 1 of 12 cohort studies in Europe and North America (61,798 person-years of follow-up, 1844 AIDS events, and 1005 deaths). Results: Although baseline CD4 cell count became less prognostic with time, individuals with a baseline CD4 count 350 cells/μL (hazard ratio for AIDS = 2.3, 95% confidence interval [CI]: 1.0 to 2.3; mortality hazard ratio = 2.5, 95% CI: 1.2 to 5.5, 4 to 6 years after starting HAART). Rates of AIDS were persistently higher in individuals who had experienced an AIDS event before starting HAART. Individuals with presumed transmission by means of injection drug use experienced substantially higher rates of AIDS and death than other individuals throughout follow-up (AIDS hazard ratio = 1.6, 95% CI: 0.8 to 3.0; mortality hazard ratio = 3.5, 95% CI: 2.2 to 5.5, 4 to 6 years after starting HAART). Conclusions: Compared with other patient groups, injection drug users and patients with advanced immunodeficiency at baseline experience substantially increased rates of AIDS and death up to 6 years after starting HAART

    High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations

    No full text
    : The impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which the presence within 100 kb of an SV breakpoint associates with altered expression. For the majority of these genes, expression increases rather than decreases with corresponding breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated breakpoints involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach, and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of non-amplified cases. For many genes, SVs are significantly associated with increased numbers or greater proximity of enhancer regulatory elements near the gene. DNA methylation near the promoter is often increased with nearby SV breakpoint, which may involve inactivation of repressor elements

    Pan-cancer analysis of whole genomes

    No full text

    Combined burden and functional impact tests for cancer driver discovery using DriverPower

    No full text
    The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower's background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery
    corecore