7 research outputs found

    Left-Hand Side Exploration of Novel Bacterial Topoisomerase Inhibitors to Improve Selectivity against hERG Binding

    No full text
    Structure–activity relationship (SAR) exploration on the left-hand side (LHS) of a novel class of bacterial topoisomerase inhibitors led to a significant improvement in the selectivity against hERG cardiac channel binding with concomitant potent antimycobacterial activity. Bulky polar substituents at the C-7 position of the naphthyridone ring did not disturb its positioning between two base pairs of DNA. Further optimization of the polar substituents on the LHS of the naphthyridone ring led to potent antimycobacterial activity (Mtb MIC = 0.06 μM) against <i>Mycobacterium tuberculosis</i> (Mtb). Additionally, this knowledge provided a robust SAR understanding to mitigate the hERG risk. This compound class inhibits Mtb DNA gyrase and retains its antimycobacterial activity against moxifloxacin-resistant strains of Mtb. Finally, we demonstrate <i>in vivo</i> proof of concept in an acute mouse model of TB following oral administration of compound <b>19</b>

    Methyl-Thiazoles: A Novel Mode of Inhibition with the Potential to Develop Novel Inhibitors Targeting InhA in Mycobacterium tuberculosis

    No full text
    InhA is a well validated Mycobacterium tuberculosis (Mtb) target as evidenced by the clinical success of isoniazid. Translating enzyme inhibition to bacterial cidality by targeting the fatty acid substrate site of InhA remains a daunting challenge. The recent disclosure of a methyl-thiazole series demonstrates that bacterial cidality can be achieved with potent enzyme inhibition and appropriate physicochemical properties. In this study, we report the molecular mode of action of a lead methyl-thiazole, along with analogues with improved CYP inhibition profile. We have identified a novel mechanism of InhA inhibition characterized by a hitherto unreported “Y158-out” inhibitor-bound conformation of the protein that accommodates a neutrally charged “warhead”. An additional novel hydrophilic interaction with protein residue M98 allows the incorporation of favorable physicochemical properties for cellular activity. Notably, the methyl-thiazole prefers the NADH-bound form of the enzyme with a <i>K</i><sub>d</sub> of ∼13.7 nM, as against the NAD<sup>+</sup>-bound form of the enzyme

    Novel N‑Linked Aminopiperidine-Based Gyrase Inhibitors with Improved hERG and in Vivo Efficacy against Mycobacterium tuberculosis

    No full text
    DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity. The mechanism of inhibition of DNA gyrase was distinct from the fluoroquinolones, as shown by their ability to inhibit the growth of fluoroquinolone-resistant Mtb. Biochemical studies demonstrated this class to exert its action via single-strand cleavage rather than double-strand cleavage, as seen with fluoroquinolones. The compounds are highly bactericidal against extracellular as well as intracellular Mtb. Lead optimization resulted in the identification of potent compounds with improved oral bioavailability and reduced cardiac ion channel liability. Compounds from this series are efficacious in various murine models of tuberculosis

    Thiazolopyridine Ureas as Novel Antitubercular Agents Acting through Inhibition of DNA Gyrase B

    No full text
    A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC<sub>50</sub> ≤ 1 nM and Mtb MIC ≤ 0.1 μM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis

    Azaindoles: Noncovalent DprE1 Inhibitors from Scaffold Morphing Efforts, Kill Mycobacterium tuberculosis and Are Efficacious <i>in Vivo</i>

    No full text
    We report 1,4-azaindoles as a new inhibitor class that kills Mycobacterium tuberculosis <i>in vitro</i> and demonstrates efficacy in mouse tuberculosis models. The series emerged from scaffold morphing efforts and was demonstrated to noncovalently inhibit decaprenylphosphoryl-β-d-ribose2′-epimerase (DprE1). With “drug-like” properties and no expectation of pre-existing resistance in the clinic, this chemical class has the potential to be developed as a therapy for drug-sensitive and drug-resistant tuberculosis

    Discovery of Imidazo[1,2‑<i>a</i>]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis

    No full text
    The approval of bedaquiline to treat tuberculosis has validated adenosine triphosphate (ATP) synthase as an attractive target to kill Mycobacterium tuberculosis (Mtb). Herein, we report the discovery of two diverse lead series imidazo­[1,2-<i>a</i>]­pyridine ethers (IPE) and squaramides (SQA) as inhibitors of mycobacterial ATP synthesis. Through medicinal chemistry exploration, we established a robust structure–activity relationship of these two scaffolds, resulting in nanomolar potencies in an ATP synthesis inhibition assay. A biochemical deconvolution cascade suggested cytochrome c oxidase as the potential target of IPE class of molecules, whereas characterization of spontaneous resistant mutants of SQAs unambiguously identified ATP synthase as its molecular target. Absence of cross resistance against bedaquiline resistant mutants suggested a different binding site for SQAs on ATP synthase. Furthermore, SQAs were found to be noncytotoxic and demonstrated efficacy in a mouse model of tuberculosis infection

    Discovery of Imidazo[1,2‑<i>a</i>]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis

    No full text
    The approval of bedaquiline to treat tuberculosis has validated adenosine triphosphate (ATP) synthase as an attractive target to kill Mycobacterium tuberculosis (Mtb). Herein, we report the discovery of two diverse lead series imidazo­[1,2-<i>a</i>]­pyridine ethers (IPE) and squaramides (SQA) as inhibitors of mycobacterial ATP synthesis. Through medicinal chemistry exploration, we established a robust structure–activity relationship of these two scaffolds, resulting in nanomolar potencies in an ATP synthesis inhibition assay. A biochemical deconvolution cascade suggested cytochrome c oxidase as the potential target of IPE class of molecules, whereas characterization of spontaneous resistant mutants of SQAs unambiguously identified ATP synthase as its molecular target. Absence of cross resistance against bedaquiline resistant mutants suggested a different binding site for SQAs on ATP synthase. Furthermore, SQAs were found to be noncytotoxic and demonstrated efficacy in a mouse model of tuberculosis infection
    corecore