1 research outputs found

    Why my photos look sideways or upside down? Detecting Canonical Orientation of Images using Convolutional Neural Networks

    Full text link
    Image orientation detection requires high-level scene understanding. Humans use object recognition and contextual scene information to correctly orient images. In literature, the problem of image orientation detection is mostly confronted by using low-level vision features, while some approaches incorporate few easily detectable semantic cues to gain minor improvements. The vast amount of semantic content in images makes orientation detection challenging, and therefore there is a large semantic gap between existing methods and human behavior. Also, existing methods in literature report highly discrepant detection rates, which is mainly due to large differences in datasets and limited variety of test images used for evaluation. In this work, for the first time, we leverage the power of deep learning and adapt pre-trained convolutional neural networks using largest training dataset to-date for the image orientation detection task. An extensive evaluation of our model on different public datasets shows that it remarkably generalizes to correctly orient a large set of unconstrained images; it also significantly outperforms the state-of-the-art and achieves accuracy very close to that of humans
    corecore