28 research outputs found

    The Effects of Omega-3 Fatty Acids on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune Cells: Implications for Multiple Sclerosis

    Get PDF
    In multiple sclerosis (MS), compromised blood-brain barrier (BBB) integrity contributes to inflammatory T cell migration into the central nervous system. Matrix metalloproteinase-9 (MMP-9) is associated with BBB disruption and subsequent T cell migration into the CNS. The aim of this paper was to evaluate the effects of omega-3 fatty acids on MMP-9 levels and T cell migration. Peripheral blood mononuclear cells (PBMC) from healthy controls were pretreated with two types of omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Cell supernatants were used to determine MMP-9 protein and activity levels. Jurkat cells were pretreated with EPA and DHA and were added to fibronectin-coated transwells to measure T cell migration. EPA and DHA significantly decreased MMP-9 protein levels, MMP-9 activity, and significantly inhibited human T cell migration. The data suggest that omega-3 fatty acids may benefit patients with multiple sclerosis by modulating immune cell production of MMP-9

    Lipoic Acid Attenuates Inflammation via cAMP and Protein Kinase A Signaling

    Get PDF
    Abnormal regulation of the inflammatory response is an important component of diseases such as diabetes, Alzheimer's disease and multiple sclerosis (MS). Lipoic acid (LA) has been shown to have antioxidant and anti-inflammatory properties and is being pursued as a therapy for these diseases. We first reported that LA stimulates cAMP production via activation of G-protein coupled receptors and adenylyl cyclases. LA also suppressed NK cell activation and cytotoxicity. In this study we present evidence supporting the hypothesis that the anti-inflammatory properties of LA are mediated by the cAMP/PKA signaling cascade. Additionally, we show that LA oral administration elevates cAMP levels in MS subjects.We determined the effects of LA on IL-6, IL-17 and IL-10 secretion using ELISAs. Treatment with 50 µg/ml and 100 µg/ml LA significantly reduced IL-6 levels by 19 and 34%, respectively, in T cell enriched PBMCs. IL-17 levels were also reduced by 35 and 50%, respectively. Though not significant, LA appeared to have a biphasic effect on IL-10 production. Thymidine incorporation studies showed LA inhibited T cell proliferation by 90%. T-cell activation was reduced by 50% as measured by IL-2 secretion. Western blot analysis showed that LA treatment increased phosphorylation of Lck, a downstream effector of protein kinase A. Pretreatment with a peptide inhibitor of PKA, PKI, blocked LA inhibition of IL-2 and IFN gamma production, indicating that PKA mediates these responses. Oral administration of 1200 mg LA to MS subjects resulted in increased cAMP levels in PBMCs four hours after ingestion. Average cAMP levels in 20 subjects were 43% higher than baseline.Oral administration of LA in vivo resulted in significant increases in cAMP concentration. The anti-inflammatory effects of LA are mediated in part by the cAMP/PKA signaling cascade. These novel findings enhance our understanding of the mechanisms of action of LA

    Recombinant T-Cell Receptor Ligand (RTL) for Treatment of Multiple Sclerosis: A Double-Blind, Placebo-Controlled, Phase 1, Dose-Escalation Study

    Get PDF
    Background. Recombinant T-cell receptor ligand 1000 (RTL1000) is a single-chain protein construct containing the outer two domains of HLA-DR2 linked to myelin-oligodendrocyte-glycoprotein- (MOG-) 35–55 peptide. Analogues of RTL1000 induce T-cell tolerance, reverse clinical and histological disease, and promote repair in experimental autoimmune encephalomyelitis (EAE) in DR2 transgenic, C57BL/6, and SJL/J mice. Objective. Determining the maximum tolerated dose, safety, and tolerability of RTL1000 in multiple sclerosis (MS) subjects. Methods. This was a multicenter, Phase I dose-escalation study in HLA-DR2+ MS subjects. Consecutive cohorts received RTL1000 doses of 2, 6, 20, 60, 200, and 100 mg, respectively. Subjects within each cohort randomly received a single intravenous infusion of RTL1000 or placebo at a 4 : 2 ratio. Safety monitoring included clinical, laboratory, and brain magnetic resonance imaging (MRI) evaluations. Results. Thirty-four subjects completed the protocol. All subjects tolerated the 2–60 mg doses of RTL1000. Doses ≥100 mg caused hypotension and diarrhea in 3 of 4 subjects, leading to discontinuation of further enrollment. Conclusions. The maximum tolerated dose of RTL1000 in MS subjects is 60 mg, comparable to effective RTL doses in EAE. RTL1000 is a novel approach for MS treatment that may induce immunoregulation without immunosuppression and promote neural repair

    Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND). a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension

    Get PDF
    Background: Although several disease-modifying treatments are available for relapsing multiple sclerosis, treatment effects have been more modest in progressive multiple sclerosis and have been observed particularly in actively relapsing subgroups or those with lesion activity on imaging. We sought to assess whether natalizumab slows disease progression in secondary progressive multiple sclerosis, independent of relapses. Methods: ASCEND was a phase 3, randomised, double-blind, placebo-controlled trial (part 1) with an optional 2 year open-label extension (part 2). Enrolled patients aged 18–58 years were natalizumab-naive and had secondary progressive multiple sclerosis for 2 years or more, disability progression unrelated to relapses in the previous year, and Expanded Disability Status Scale (EDSS) scores of 3·0–6·5. In part 1, patients from 163 sites in 17 countries were randomly assigned (1:1) to receive 300 mg intravenous natalizumab or placebo every 4 weeks for 2 years. Patients were stratified by site and by EDSS score (3·0–5·5 vs 6·0–6·5). Patients completing part 1 could enrol in part 2, in which all patients received natalizumab every 4 weeks until the end of the study. Throughout both parts, patients and staff were masked to the treatment received in part 1. The primary outcome in part 1 was the proportion of patients with sustained disability progression, assessed by one or more of three measures: the EDSS, Timed 25-Foot Walk (T25FW), and 9-Hole Peg Test (9HPT). The primary outcome in part 2 was the incidence of adverse events and serious adverse events. Efficacy and safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01416181. Findings: Between Sept 13, 2011, and July 16, 2015, 889 patients were randomly assigned (n=440 to the natalizumab group, n=449 to the placebo group). In part 1, 195 (44%) of 439 natalizumab-treated patients and 214 (48%) of 448 placebo-treated patients had confirmed disability progression (odds ratio [OR] 0·86; 95% CI 0·66–1·13; p=0·287). No treatment effect was observed on the EDSS (OR 1·06, 95% CI 0·74–1·53; nominal p=0·753) or the T25FW (0·98, 0·74–1·30; nominal p=0·914) components of the primary outcome. However, natalizumab treatment reduced 9HPT progression (OR 0·56, 95% CI 0·40–0·80; nominal p=0·001). In part 1, 100 (22%) placebo-treated and 90 (20%) natalizumab-treated patients had serious adverse events. In part 2, 291 natalizumab-continuing patients and 274 natalizumab-naive patients received natalizumab (median follow-up 160 weeks [range 108–221]). Serious adverse events occurred in 39 (13%) patients continuing natalizumab and in 24 (9%) patients initiating natalizumab. Two deaths occurred in part 1, neither of which was considered related to study treatment. No progressive multifocal leukoencephalopathy occurred. Interpretation: Natalizumab treatment for secondary progressive multiple sclerosis did not reduce progression on the primary multicomponent disability endpoint in part 1, but it did reduce progression on its upper-limb component. Longer-term trials are needed to assess whether treatment of secondary progressive multiple sclerosis might produce benefits on additional disability components. Funding: Biogen

    LA appears to have a biphasic effect on IL-10 production.

    No full text
    <p>T cell enriched PBMCs were treated with 10, 25, or 100 µg/ml LA for 5 minutes prior to treatment with 2 µg/ml PHA for 24 hours. Supernatants were used to measure IL-10 levels via ELISA (R&D systems, Minneapolis, MN). Percent change values were determined from PHA stimulated control. Depicted is the average of at least 3 donors in triplicate.</p

    Treatment with LA attenuates T cell proliferation and activation.

    No full text
    <p>(A) T cell enriched PBMCs were pretreated with LA prior to stimulation with anti-CD3/CD28 for 72 hours. Proliferation was measured using 3H-Thymidine incorporation. N = 3. *indicates statistical significance compared to anti-CD3/CD28 control (<i>p</i><0.05). (B) T cell enriched PBMCs were stimulated in triplicate with anti-CD3 (4 µg/ml, OKT3) and soluble anti-CD28 (5 µg/ml, BD Pharmingen) in the presence or absence of 50 µg/ml LA (1 minute pretreatment). Cells were then incubated for 6 hours at 37°C, 5% CO2. Supernatants were collected and IL-2 levels were analyzed by ELISA (R&D Systems, Minneapolis, MN). N = 3. *indicates statistical significance compared to anti-CD3/CD28 control (<i>p</i><0.05).</p
    corecore