205 research outputs found

    Variation in the organization and subunit composition of the mammalian pyruvate dehydrogenase complex E2/E3BP core assembly

    Get PDF
    The final version of this article is available at the link below.Crucial to glucose homoeostasis in humans, the hPDC (human pyruvate dehydrogenase complex) is a massive molecular machine comprising multiple copies of three distinct enzymes (E1–E3) and an accessory subunit, E3BP (E3-binding protein). Its icosahedral E2/E3BP 60-meric ‘core’ provides the central structural and mechanistic framework ensuring favourable E1 and E3 positioning and enzyme co-operativity. Current core models indicate either a 48E2+12E3BP or a 40E2+20E3BP subunit composition. In the present study, we demonstrate clear differences in subunit content and organization between the recombinant hPDC core (rhPDC; 40E2+20E3BP), generated under defined conditions where E3BP is produced in excess, and its native bovine (48E2+12E3BP) counterpart. The results of the present study provide a rational basis for resolving apparent differences between previous models, both obtained using rhE2/E3BP core assemblies where no account was taken of relative E2 and E3BP expression levels. Mathematical modelling predicts that an ‘average’ 48E2+12E3BP core arrangement allows maximum flexibility in assembly, while providing the appropriate balance of bound E1 and E3 enzymes for optimal catalytic efficiency and regulatory fine-tuning. We also show that the rhE2/E3BP and bovine E2/E3BP cores bind E3s with a 2:1 stoichiometry, and propose that mammalian PDC comprises a heterogeneous population of assemblies incorporating a network of E3 (and possibly E1) cross-bridges above the core surface.This work was partly supported by EPSRC (under grants GR/R99393/01 and EP/C015452/1)

    Micromachined Nanoporous Membranes For Blood Oxygenation Systems

    Get PDF
    Nanostructured membranes with precisely engineered nanopores were fabricated on a thin silicon nitride membrane, using a combination of bulk micromachining and focused-ion-beam drilling. These membranes are designed to preserve microscale blood channel dimensions, thereby permitting the red cell shape change that enhances gas exchange in the pulmonary capillary. The membranes were tested for their mechanical stability and the results were verified with finite element analysis. Initial studies have proven the membranes to be robust, and capable of withstanding pressures typically experienced in blood oxygenator channels. A novel MEMS-based blood oxygenation system employing the nanoporous membranes is also presented. The oxygenation system is designed to have controlled blood and gas volumes for efficient blood oxygenation. © 2008 IEEE

    Human CSF movement influenced by vascular low frequency oscillations and respiration

    Get PDF
    Cerebrospinal fluid (CSF) movement through the pathways within the central nervous system is of high significance for maintaining normal brain health and function. Low frequency hemodynamics and respiration have been shown to drive CSF in humans independently. Here, we hypothesize that CSF movement may be driven simultaneously (and in synchrony) by both mechanisms and study their independent and coupled effects on CSF movement using novel neck fMRI scans. Caudad CSF movement at the fourth ventricle and hemodynamics of the major neck blood vessels (internal carotid arteries and internal jugular veins) was measured from 11 young, healthy volunteers using novel neck fMRI scans with simultaneous measurement of respiration. Two distinct models of CSF movement (1. Low-frequency hemodynamics and 2. Respiration) and possible coupling between them were investigated. We show that the dynamics of brain fluids can be assessed from the neck by studying the interrelationships between major neck blood vessels and the CSF movement in the fourth ventricle. We also demonstrate that there exists a cross-frequency coupling between these two separable mechanisms. The human CSF system can respond to multiple coupled physiological forces at the same time. This information may help inform the pathological mechanisms behind CSF movement-related disorders

    Cryotomography of budding influenza a virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end

    Get PDF
    Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process

    Using honey to heal diabetic foot ulcers

    Get PDF
    Diabetic ulcers seem to be arrested in the inflammatory/proliferative stage of the healing process, allowing infection and inflammation to preclude healing. Antibiotic-resistant bacteria have become a major cause of infections, including diabetic foot infections. It is proposed here that the modern developments of an ancient and traditional treatment for wounds, dressing them with honey, provide the solution to the problem of getting diabetic ulcers to move on from the arrested state of healing. Honeys selected to have a high level of antibacterial activity have been shown to be very effective against antibiotic-resistant strains of bacteria in laboratory and clinical studies. The potent anti-inflammatory action of honey is also likely to play an important part in overcoming the impediment to healing that inflammation causes in diabetic ulcers, as is the antioxidant activity of honey. The action of honey in promotion of tissue regeneration through stimulation of angiogenesis and the growth of fibroblasts and epithelial cells, and its insulin-mimetic effect, would also be of benefit in stimulating the healing of diabetic ulcers. The availability of honey-impregnated dressings which conveniently hold honey in place on ulcers has provided a means of rapidly debriding ulcers and removing the bacterial burden so that good healing rates can be achieved with neuropathic ulcers. With ischemic ulcers, where healing cannot occur because of lack of tissue viability, these honey dressings keep the ulcers clean and prevent infection occurring

    The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A

    Get PDF
    Genome-wide association studies (GWAS) have provided strong evidence for inherited predisposition to childhood acute lymphoblastic leukaemia (ALL) identifying a number of risk loci. We have previously shown common SNPs at 9p21.3 influence ALL risk. These SNP associations are generally not themselves candidates for causality, but simply act as markers for functional variants. By means of imputation of GWAS data and subsequent validation SNP genotyping totalling 2,177 ALL cases and 8,240 controls, we have shown that the 9p21.3 association can be ascribed to the rare highimpact CDKN2A p.Ala148Thr variant (rs3731249; Odds ratio=2.42, P=3.45×10−19). The association between rs3731249 genotype and risk was not specific to particular subtype of B-cell ALL. The rs3731249 variant is associated with predominant nuclear localisation of the CDKN2A transcript suggesting the functional effect of p.Ala148Thr on ALL risk may be through compromised ability to inhibit cyclin D within the cytoplasm

    A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1.

    Get PDF
    Genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of childhood acute lymphoblastic leukemia (ALL). To identify new susceptibility loci for the largest subtype of ALL, B-cell precursor ALL (BCP-ALL), we conducted a meta-analysis of two GWASs with imputation using 1000 Genomes and UK10K Project data as reference (totaling 1658 cases and 7224 controls). After genotyping an additional 2525 cases and 3575 controls, we identify new susceptibility loci for BCP-ALL mapping to 10q26.13 (rs35837782, LHPP, P=1.38 × 10(-11)) and 12q23.1 (rs4762284, ELK3, P=8.41 × 10(-9)). We also provide confirmatory evidence for the existence of independent risk loci at 9p21.3, but show that the association marked by rs77728904 can be accounted for by linkage disequilibrium with the rare high-impact CDKN2A p.Ala148Thr variant rs3731249. Our data provide further insights into genetic susceptibility to ALL and its biology
    corecore