27 research outputs found

    Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats

    Get PDF
    We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR-α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile (P<0.05) and reduced serum and liver MDA concentration compared to HFD rats (P<0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR-α, ACLY, FAS, and NF-κB p65 expressions and enhanced the PPAR-α, IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers (P<0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver

    Curcumin prevents muscle damage by regulating NF-kB and Nrf2 pathways and improves performance: an in vivo model

    Get PDF
    Purpose Exercise (Ex) increases reactive oxygen species and impairs antioxidant defense systems. Recent data suggest that curcumin (CW) possesses peroxisome proliferator-activated receptor gamma activity and anti-inflammatory properties. Therefore, this study was designed to investigate the effects of CW supplementation on Ex performance, endurance, and changes in serum and muscle proteins in rats after exhaustive Ex. Materials and methods Twenty-eight (28) male Wistar rats (age: 8 weeks and body weight: 180±20 g) were divided into four treatment groups: 1) control (C; no Ex), 2) C + CW (no Ex + CW), 3) C + Ex, and 4) C + Ex + CW (Ex + CW). CW was administered as 100 mg/kg CurcuWin®, providing 20 mg of curcuminoids daily for 6 weeks. A motor-driven rodent treadmill was used to carry out the Ex protocols. During a 5-day period, animals in chronic Ex groups were put through different regimens: day 1, 10 m/min for 10 minutes; day 2, 20 m/min for 10 minutes; day 3, 25 m/min for 10 minutes; day 4, 25 m/min for 20 minutes; and day 5, 25 m/min for 30 minutes. Animals were exercised at 25 m/min for 45 min/d for 5 d/wk for 6 weeks. Blood and muscle samples were analyzed for muscle markers, oxidative stress, and antioxidant markers. Results Lactate and muscle malondialdehyde levels decreased in the CW-treated groups (P<0.0001). However, activities of antioxidant enzyme levels increased in the CW-treated groups. Run to exhaustion (minutes) improved in the CW-treated groups. Muscle nuclear factor-κB (P<0.05) and heat shock protein 70 (P<0.05) levels were much lowered in the CW treated group followed by Ex group. In addition, muscle inhibitors of kappa B, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, thioredoxin-1, sirtuin 1, nuclear factor (erythroid-derived 2)-like 2, and glucose transporter 4 protein levels in the Ex + CW group were higher than those in the control and Ex groups (P<0.05). Conclusion This study suggests that novel CW has the potential to help prevent muscle damage by regulating the nuclear factor-κB and nuclear factor (erythroid-derived 2)-like 2 pathways and improve the performance and nutritional values of CW

    Molecular genetics and phenotypic assessment of foxtail millet (Setaria italica (L.) P. Beauv.) landraces revealed remarkable variability of morpho-physiological, yield, and yield‐related traits

    Get PDF
    Foxtail millet (Setaria italica (L.) P. Beauv.) is highly valued for nutritional traits, stress tolerance and sustainability in resource-poor dryland agriculture. However, the low productivity of this crop in semi-arid regions of Southern India, is further threatened by climate stress. Landraces are valuable genetic resources, regionally adapted in form of novel alleles that are responsible for cope up the adverse conditions used by local farmers. In recent years, there is an erosion of genetic diversity. We have hypothesized that plant genetic resources collected from the semi-arid climatic zone would serve as a source of novel alleles for the development of climate resilience foxtail millet lines with enhanced yield. Keeping in view, there is an urgent need for conservation of genetic resources. To explore the genetic diversity, to identify superior genotypes and novel alleles, we collected a heterogeneous mixture of foxtail millet landraces from farmer fields. In an extensive multi-year study, we developed twenty genetically fixed foxtail millet landraces by single seed descent method. These landraces characterized along with four released cultivars with agro-morphological, physiological, yield and yield-related traits assessed genetic diversity and population structure. The landraces showed significant diversity in all the studied traits. We identified landraces S3G5, Red, Black and S1C1 that showed outstanding grain yield with earlier flowering, and maturity as compared to released cultivars. Diversity analysis using 67 simple sequence repeat microsatellite and other markers detected 127 alleles including 11 rare alleles, averaging 1.89 alleles per locus, expected heterozygosity of 0.26 and an average polymorphism information content of 0.23, collectively indicating a moderate genetic diversity in the landrace populations. Euclidean Ward’s clustering, based on the molecular markers, principal coordinate analysis and structure analysis concordantly distinguished the genotypes into two to three sub-populations. A significant phenotypic and genotypic diversity observed in the landraces indicates a diverse gene pool that can be utilized for sustainable foxtail millet crop improvement

    Salacia Extract Improves Postprandial Glucose and Insulin Response: A Randomized Double-Blind, Placebo Controlled, Crossover Study in Healthy Volunteers

    No full text
    Thirty-five healthy subjects were randomly assigned to different doses of Salacia chinensis extract (200 mg, 300 mg, and 500 mg SCE) capsules and compared with placebo. It is a placebo controlled randomized crossover design study. Subjects were given oral sucrose solution along with capsules and plasma glucose and insulin responses were analyzed. Blood samples were collected at 0, 30, 60, 90, 120, and 180 minutes after administration. AUC insulin significantly lowered after ingestion of SCE. No significant adverse events were observed. Reducing glucose and insulin is very important in reducing postprandial hyperglycemia

    Capsaicinoids improve consequences of physical activity

    No full text
    The purpose of this study was to investigate the effects of capsaicinoids (CAPs) on lipid metabolism, inflammation, antioxidant status and the changes in gene products involved in these metabolic functions in exercised rats. A total of 28 male Wistar albino rats were randomly divided into four groups (n = 7) (i) No exercise and no CAPs, (ii) No exercise + CAPs (iii) Regular exercise, (iv) Regular exercise + CAPs. Rats were administered as 0.2 mg capsaicinoids from 10 mg/kg BW/day Capsimax® daily for 8 weeks. A significant decrease in lactate and malondialdehyde (MDA) levels and increase in activities of antioxidant enzymes were observed in the combination of regular exercise and CAPs group (P < 0.0001). Regular exercise + CAPs treated rats had greater nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) levels in muscle than regular exercise and no exercise rats (P < 0.001). Nevertheless, regular exercise + CAPs treated had lower nuclear factor kappa B (NF-κB) and IL-10 levels in muscle than regular exercise and control rats (P < 0.001). Muscle sterol regulatory element-binding protein 1c (SREBP-1c), liver X receptors (LXR), ATP citrate lyase (ACLY) and fatty acid synthase (FAS) levels in the regular exercise + CAPs group were lower than all groups (P < 0.05). However, muscle PPAR-γ level was higher in the regular exercise and CAPs alone than the no exercise rats. These results suggest CAPs with regular exercise may enhance lipid metabolism by regulation of gene products involved in lipid and antioxidant metabolism including SREBP-1c, PPAR-γ, and Nrf2 pathways in rats. Keywords: Exercise, Capsaicinoid, PPAR-γ, Nrf2, SREBP-1

    Lutein and zeaxanthin isomers modulates lipid metabolism and the inflammatory state of retina in obesity-induced high-fat diet rodent model

    No full text
    Abstract Background Several studies associated high-fat intakes with a high incidence of age-related macular degeneration (AMD). Lutein and Zeaxanthin isomers (L/Zi) may counteract reactive oxygen species produced by oxidative stress. The present study was conducted to determine the possible effects of L/Zi administration on lipid profile, protein genes associated with oxidative stress and inflammation pathways in the obesity induced by a high-fat diet (HFD) in rodents. Methods Twenty-eight male Wistar rats were allocated into four groups as follows: (i) Control, (ii) Control + L/Zi, (iii) High Fat Diet (HFD), and (iv) HFD+ L/Z. L/Zi was administrated for 8 weeks at a daily dose of 100 mg/kg BW. Results L/Zi administration significantly reduced insulin and free fatty acid (FFA) levels (P < 0.001) and ameliorated the oxidative damage by reducing malondialdehyde (MDA) concentration and increasing antioxidant enzymes activities of retina induced by HFD. In addition, supplementation decreased the levels of vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB) and intercellular adhesion molecule-1 (ICAM) (P < 0.001, respectively) and improved nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) gene proteins in retinal tissues (P < 0.001). Conclusion Rats fed with HFD exhibited increased oxidative stress and upregulation of inflammatory indicators. However, L/Zi supplementation modulates genes involved oxidative stress and inflammation including NF-κB and Nrf2 signaling pathways in the retina which may contribute to ameliorating retinal damage induced by HFD

    MAT, a Novel Polyherbal Aphrodisiac Formulation, Enhances Sexual Function and Nrf2/HO-1 Pathway While Reducing Oxidative Damage in Male Rats

    No full text
    Mucuna pruriens, Ashwagandha, and Tribulus terrestris are known as the enhancers for sexual health, functional activities, vitality, and longevity. These herbs had been widely used in the Ayurveda medicine as aphrodisiacs through the ages, and their efficacy was also verified separately in our previous publication. Therefore, the aim of this study was to determine the effects of Mucuna, Ashwagandha, and Tribulus complexes on sexual function in rats. Twenty-eight male rats allocated to four groups as follows: (i) negative control (C); (ii) positive control or sildenafil citrate treated group (5 mg/kg) (S); (iii) MAT1 (combination of 10 mg Mucuna (M) + 10 mg Ashwagandha (A) + 10 mg Tribulus (T)/kg BW); (iv) MAT 2 (20 mg Mucuna + 20 mg Ashwagandha + 20 mg Tribulus/kg BW). There was no significant difference found between the MAT1 and MAT2 groups while they showed significantly increased testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels when compared to the negative control. Significant increases in Nrf2/HO1 levels and decreases in NF-κB were detected in MAT groups similar to the decrease in serum and testis malondialdehyde (MDA) levels as compared to both controls. The sperm motility, count, and rate also significantly improved in both MAT groups, while ALT, AST, creatinine, ALP, and urea levels did not change in any of the groups. Oral consumption of MATs combination in male rats resulted in inhibition of NF-κB and MDA and also increased sex hormones with Nrf2-mediated HO-1 induction. MAT combinations may improve sexual functions by increasing levels of sexual hormones and regulation of NF-κB and Nrf2/HO-1 signaling pathways

    Effects of Exercise Combined with Undenatured Type II Collagen on Endurance Capacity, Antioxidant Status, Muscle Lipogenic Genes and E3 Ubiquitin Ligases in Rats

    No full text
    The current study aimed to investigate the effect of exercise combined with undenatured type II collagen (UCII) administration on endurance capacity, lipid metabolism, inflammation, and antioxidant status in rats. Twenty-one male Wistar albino rats were divided into three groups as follows: (1) Sedentary control, (2) Exercise (E), (3) Exercise + UCII (4 mg/kg BW/day; E + UCII). The findings showed that the exhaustive running time in the UCII group was significantly prolonged compared to that of the non-supplemented group (p &lt; 0.001). When compared to the control group, total serum cholesterol (TC, p &lt; 0.05) and triglyceride (TG, p &lt; 0.05) levels decreased, while creatinine kinase (CK) levels increased in the E group (p &lt; 0.001). Serum creatinine kinase levels were reduced in the E + UCII group compared to the E group (p &lt; 0.01). Serum lactate, myoglobin (p &lt; 0.01), and osteocalcin levels (p &lt; 0.01) increased significantly in exercised rats compared to sedentary control rats, while serum lactate (p &lt; 0.01) and myoglobin (p &lt; 0.0001) levels decreased in the E + UCII group compared to control. Additionally, UCII supplementation caused significant increases in antioxidant enzyme activities [SOD (p &lt; 0.01) and GSH-Px (p &lt; 0.05)] and decreases in malondialdehyde (MDA) and tumor necrosis factor (TNF-α) levels (p &lt; 0.001). Muscle lipogenic protein (SREBP-1c, ACLY, LXR, and FAS) levels were lower in the E + UCII group than in other groups. In addition, UCII supplementation decreased muscle MAFbx, MuRF-1, myostatin and increased MyoD levels in exercised rats. Moreover, the E + UCII group had lower muscle inflammatory markers [TNF-α (p &lt; 0.0001) and IL-1β (p &lt; 0.01)] than the control group. These results suggest exercise combined with UCII (4 mg/kg BW/day) modulates lipid, muscle, and antioxidant status in rats
    corecore