1,341 research outputs found

    Characterization of timing and spacial resolution of novel TI-LGAD structures before and after irradiation

    Full text link
    The characterization of spacial and timing resolution of the novel Trench Isolated LGAD (TI-LGAD) technology is presented. This technology has been developed at FBK with the goal of achieving 4D pixels, where an accurate position resolution is combined in a single device with the precise timing determination for Minimum Ionizing Particles (MIPs). In the TI-LGAD technology, the pixelated LGAD pads are separated by physical trenches etched in the silicon. This technology can reduce the interpixel dead area, mitigating the fill factor problem. The TI-RD50 production studied in this work is the first one of pixelated TI-LGADs. The characterization was performed using a scanning TCT setup with an infrared laser and a 90^90Sr source setup

    Characterization of timing and spacial resolution of novel TI-LGAD structures before and after irradiation

    Full text link
    The characterization of spacial and timing resolution of the novel Trench Isolated LGAD (TI-LGAD) technology is presented. This technology has been developed at FBK with the goal of achieving 4D pixels, where an accurate position resolution is combined in a single device with the precise timing determination for Minimum Ionizing Particles (MIPs). In the TI-LGAD technology, the pixelated LGAD pads are separated by physical trenches etched in the silicon. This technology can reduce the interpixel dead area, mitigating the fill factor problem. The TI-RD50 production studied in this work is the first one of pixelated TI-LGADs. The characterization was performed using a scanning TCT setup with an infrared laser and a 90^{90}Sr source setup

    Status and upgrade of the visible light diagnostics port for energy spread measurements at KARA

    Get PDF
    At the visible light diagnostic (VLD) port at the Karlsruhe Research Accelerator (KARA), it is possible to measure the energy spread of electron bunches by measuring the horizontal bunch profile of the incoherent synchrotron radiation. KALYPSO, a MHz-rate line-array detector has been used to measure the bunch profile. Recently, the KALYPSO system has been upgraded to a version incorporating a microstrip sensor based on TI-LGAD. The performed measurements have shown that the overall sensitivity of the system was significantly improved, which enables measurements at low bunch charges. In this contribution, a brief overview of the upgraded setup and preliminary measurement results will be presented

    Turn-by-turn measurements of the energy spread at negative momentum compaction factor at KARA

    Get PDF
    The Karlsruhe Research Accelerator (KARA), the storage ring at KIT, allows short electron bunch operation with positive as well as negative momentum compaction factor. For both cases, the beam dynamics are studied. Using a line array camera KALYPSO (KArlsruhe Linear arraY detector for MHz rePetition rate SpectrOscopy), based on TI-LGAD, the horizontal intensity distribution of the emitted visible part of the synchrotron radiation is measured at a 5-degree port of a bending magnet on a turn-by-turn time scale. As the measurement is located at a dispersive section, the dynamics of the energy spread can be studied by measuring the horizontal bunch profile. The MHz acquisition rate and the low-light sensitivity of the line camera allow measurements at low bunch currents and the investigation of the microbunching instability. This contribution presents the results of the bunch profile measurements performed at positive and negative momentum compaction factor

    Development of LGAD sensors with a thin entrance window for soft X-ray detection

    Full text link
    We show the developments carried out to improve the silicon sensor technology for the detection of soft X-rays with hybrid X-ray detectors. An optimization of the entrance window technology is required to improve the quantum efficiency. The LGAD technology can be used to amplify the signal generated by the X-rays and to increase the signal-to-noise ratio, making single photon resolution in the soft X-ray energy range possible. In this paper, we report first results obtained from an LGAD sensor production with an optimized thin entrance window. Single photon detection of soft X-rays down to 452~eV has been demonstrated from measurements, with a signal-to-noise ratio better than 20.Comment: 10 pages, 6 figure

    Characterization of iLGADs using soft X-rays

    Full text link
    Experiments at synchrotron radiation sources and X-ray Free-Electron Lasers in the soft X-ray energy range (250250eV--22keV) stand to benefit from the adaptation of the hybrid silicon detector technology for low energy photons. Inverse Low Gain Avalanche Diode (iLGAD) sensors provide an internal gain, enhancing the signal-to-noise ratio and allowing single photon detection below 11keV using hybrid detectors. In addition, an optimization of the entrance window of these sensors enhances their quantum efficiency (QE). In this work, the QE and the gain of a batch of different iLGAD diodes with optimized entrance windows were characterized using soft X-rays at the Surface/Interface:Microscopy beamline of the Swiss Light Source synchrotron. Above 250250eV, the QE is larger than 55%55\% for all sensor variations, while the charge collection efficiency is close to 100%100\%. The average gain depends on the gain layer design of the iLGADs and increases with photon energy. A fitting procedure is introduced to extract the multiplication factor as a function of the absorption depth of X-ray photons inside the sensors. In particular, the multiplication factors for electron- and hole-triggered avalanches are estimated, corresponding to photon absorption beyond or before the gain layer, respectively.Comment: 16 pages, 8 figure

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    Get PDF
    Peer reviewe
    corecore