203 research outputs found
Measurement of change in health status with Rasch models
Background: The traditional approach to the measurement of change presents important drawbacks (no information at individual level, ordinal scores, variance of the measurement instrument across time points), which Rasch models overcome. The article aims to illustrate the features of the measurement of change with Rasch models. Methods: To illustrate the measurement of change using Rasch models, the quantitative data of a longitudinal study of heart-surgery patients (N=98) were used. The scale "Perception of Positive Change" was used as an example of measurement instrument. All patients underwent cardiac rehabilitation, individual psychological intervention, and educational intervention. Nineteen patients also attended progressive muscle relaxation group trainings. The scale was administered before and after the interventions. Three Rasch approaches were used. Two separate analyses were run on the data from the two time points to test the invariance of the instrument. An analysis was run on the stacked data from both time points to measure change in a common frame of reference. Results of the latter analysis were compared with those of an analysis that removed the influence of local dependency on patient measures. Statistics t, \u3a72 and F were used for comparing the patient and item measures estimated in the Rasch analyses (a-priori \u3b1=.05). Infit, Outfit, R and item Strata were used for investigating Rasch model fit, reliability, and validity of the instrument. Results: Data of all 98 patients were included in the analyses. The instrument was reliable, valid, and substantively unidimensional (Infit, Outfit<2 for all items, R=.84, item Strata range=3.93-6.07). Changes in the functioning of the instrument occurred across the two time, which prevented the use of the two separate analyses to unambiguously measure change. Local dependency had a negligible effect on patient measures (p 65.8674). Thirteen patients improved, whereas 3 worsened. The patients who attended the relaxation group trainings did not report greater improvement than those who did not (p=.1007). Conclusions: Rasch models represent a valid framework for the measurement of change and a useful complement to traditional approaches. \ua9 Anselmi et al
Signatures of Star-planet interactions
Planets interact with their host stars through gravity, radiation and
magnetic fields, and for those giant planets that orbit their stars within
10 stellar radii (0.1 AU for a sun-like star), star-planet
interactions (SPI) are observable with a wide variety of photometric,
spectroscopic and spectropolarimetric studies. At such close distances, the
planet orbits within the sub-alfv\'enic radius of the star in which the
transfer of energy and angular momentum between the two bodies is particularly
efficient. The magnetic interactions appear as enhanced stellar activity
modulated by the planet as it orbits the star rather than only by stellar
rotation. These SPI effects are informative for the study of the internal
dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is
modeled to be strongly affected by both the stellar and planetary magnetic
fields, possibly influencing the magnetic activity of both, as well as
affecting the irradiation and even the migration of the planet and rotational
evolution of the star. As phase-resolved observational techniques are applied
to a large statistical sample of hot Jupiter systems, extensions to other
tightly orbiting stellar systems, such as smaller planets close to M dwarfs
become possible. In these systems, star-planet separations of tens of stellar
radii begin to coincide with the radiative habitable zone where planetary
magnetic fields are likely a necessary condition for surface habitability.Comment: Accepted for publication in the handbook of exoplanet
Erratum: The solar wind in time II: 3D stellar wind structure and radio emission
This is an erratum to the paper âThe solar wind in time - II: 3D stellar wind structure and radio emissionâ, which was published in MNRAS, 483(1), 873, 2019 (Ă FionnagĂĄin et al. 2019)
Cool Stars and Space Weather
Stellar flares, winds and coronal mass ejections form the space weather. They
are signatures of the magnetic activity of cool stars and, since activity
varies with age, mass and rotation, the space weather that extra-solar planets
experience can be very different from the one encountered by the solar system
planets. How do stellar activity and magnetism influence the space weather of
exoplanets orbiting main-sequence stars? How do the environments surrounding
exoplanets differ from those around the planets in our own solar system? How
can the detailed knowledge acquired by the solar system community be applied in
exoplanetary systems? How does space weather affect habitability? These were
questions that were addressed in the splinter session "Cool stars and Space
Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In
this paper, we present a summary of the contributions made to this session.Comment: Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar
Systems, and the Sun, Eds G. van Belle & H. Harris, 13 pages, 1 figur
Stellar Coronal and Wind Models: Impact on Exoplanets
Surface magnetism is believed to be the main driver of coronal heating and
stellar wind acceleration. Coronae are believed to be formed by plasma confined
in closed magnetic coronal loops of the stars, with winds mainly originating in
open magnetic field line regions. In this Chapter, we review some basic
properties of stellar coronae and winds and present some existing models. In
the last part of this Chapter, we discuss the effects of coronal winds on
exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief:
Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer
Reference Work
The solar wind in time â II. 3D stellar wind structure and radio emission
In this work, we simulate the evolution of the solar wind along its main-sequence lifetime and compute its thermal radio emission. To study the evolution of the solar wind, we use a sample of solar mass stars at different ages. All these stars have observationally reconstructed magnetic maps, which are incorporated in our 3D magnetohydrodynamic simulations of their winds. We show that angular-momentum loss and mass-loss rates decrease steadily on evolutionary time-scales, although they can vary in a magnetic cycle time-scale. Stellar winds are known to emit radiation in the form of thermal bremsstrahlung in the radio spectrum. To calculate the expected radio fluxes from these winds, we solve the radiative transfer equation numerically from first principles. We compute continuum spectra across the frequency range 100 MHz to 100 GHz and find maximum radio flux densities ranging from 0.05 to 2.2 ÎŒJy. At a frequency of 1 GHz and a normalized distance of d = 10 pc, the radio flux density follows 0.24 (Ω/Ωâ)0.9 (d/[10pc])-2ÎŒJy, where Ω is the rotation rate. This means that the best candidates for stellar wind observations in the radio regime are faster rotators within distances of 10 pc, such as Îș1 Ceti (0.73 ÎŒJy) and Ï1 Ori (2.2 ÎŒJy). These flux predictions provide a guide to observing solar-type stars across the frequency range 0.1-100 GHz in the future using the next generation of radio telescopes, such as ngVLA and Square Kilometre Array
[Measuring change in rehabilitative cardiology: reliability of a short questionnaire to assess an outcome].
The present Italian health planning demands the use of tools, care and treatments useful for the National Health Service, but with empirical effectiveness scientifically sustained. Aim of the present paper is to verify the validity, the reliability and the responsiveness of the factor "Perception of positive change" (named Schedule C) in cardiovascular rehabilitation. Method. The reliability of the Schedule C of the CBA VE has been examined comparing the mean scores obtained from each item at the entry and just before the discharge through the t-Student for paired sample. To assess the concurrent validity we used the AD Short Scale to measure anxiety and depression. 100 patients who underwent cardiac surgery were enrolled during hospitalization for a Cardiac Rehabilitation Programme. Cronbach's alpha was used to assess internal consistency of each item. Results. Each item of the Schedule C demonstrated good internal consistency (Cronbach Alpha >.88) and elevated correlations item-total for each item. The strong correlation of anxiety and depression scores with the Schedule C points out appropriate concurrent validation. Conclusions. We believe that the Schedule C of the CBA VE is endowed with suitable metric validity and then useful as outcome evaluation in cardiovascular rehabilitation settings
UVMag: stellar formation, evolution, structure and environment with space UV and visible spectropolarimetry
Important insights into the formation, structure, evolution and environment
of all types of stars can be obtained through the measurement of their winds
and possible magnetospheres. However, this has hardly been done up to now
mainly because of the lack of UV instrumentation available for long periods of
time. To reach this aim, we have designed UVMag, an M-size space mission
equipped with a high-resolution spectropolarimeter working in the UV and
visible spectral range. The UV domain is crucial in stellar physics as it is
very rich in atomic and molecular lines and contains most of the flux of hot
stars. Moreover, covering the UV and visible spectral domains at the same time
will allow us to study the star and its environment simultaneously. Adding
polarimetric power to the spectrograph will multiply tenfold the capabilities
of extracting information on stellar magnetospheres, winds, disks, and magnetic
fields. Examples of science objectives that can be reached with UVMag are
presented for pre-main sequence, main sequence and evolved stars. They will
cast new light onto stellar physics by addressing many exciting and important
questions. UVMag is currently undergoing a Research and Technology study and
will be proposed at the forthcoming ESA call for M-size missions. This
spectropolarimeter could also be installed on a large UV and visible
observatory (e.g. NASA's LUVOIR project) within a suite of instruments.Comment: Accepted in ApSS's special volume on UV astronom
- âŠ