112 research outputs found
Very low complexity convolutional neural network for quadtree structures
© 2018 Australasian Robotics and Automation Association. All rights reserved. In this paper, we present a Very Low Complexity Convolutional Neural Network (VLC-CNN) for the purpose of generating quadtree data structures for image segmentation. The use of quadtrees to encode images has applications including video encoding and robotic perception, with examples including the Coding Tree Unit in the High Efficiency Video Coding (HEVC) standard and Occupancy Grid Maps (OGM) as environment representations with variable grid-size. While some methods for determining quadtree structures include brute-force algorithms or heuristics, this paper describes the use of a Convolutional Neural Network (CNN) to predict the quadtree structure. CNNs traditionally require substantial computational and memory resources to operate, however, VLC-CNN exploits downsampling and integer-only quantised arithmetic to achieve minimal complexity. Therefore, VLC-CNN's minimal design makes it feasible for implementation in realtime or memory-constrained processing applications
Gaussian Markov Random Fields for fusion in information form
© 2016 IEEE. 2.5D maps are preferable for representing the environment owing to their compactness. When noisy observations from multiple diverse sensors at different resolutions are available, the problem of 2.5D mapping turns to how to compound the information in an effective and efficient manner. This paper proposes a generic probabilistic framework for fusing efficiently multiple sources of sensor data to generate amendable, high-resolution 2.5D maps. The key idea is to exploit the sparse structure of the information matrix. Gaussian Markov Random Fields are employed to learn a prior map, which uses the conditional independence property between spatial location to obtain a representation of the state with a sparse information matrix. This prior map encoded in information form can then be updated with other sources of sensor data in constant time. Later, mean state vector and variances can be also efficiently recovered using sparse matrices techniques. The proposed approach allows accurate estimation of 2.5D maps at arbitrary resolution, while incorporating sensor noise and spatial dependency in a statistically sound way. We apply the proposed framework to pipe wall thickness mapping and fuse data from two diverse sensors that have different resolutions. Experimental results are compared with three other methods, showing that, while greatly reducing computation time, the proposed framework is able to capture in large extend the spatial correlation to generate equivalent results to the computationally expensive optimal fusion method in covariance form with a Gaussian Process prior
Simultaneous asynchronous microphone array calibration and sound source localisation
© 2015 IEEE. In this paper, an approach for sound source localisation and calibration of an asynchronous microphone array is proposed to be solved simultaneously. A graph-based Simultaneous Localisation and Mapping (SLAM) method is used for this purpose. Traditional sound source localisation using a microphone array has two main requirements. Firstly, geometrical information of microphone array is needed. Secondly, a multichannel analog-to-digital converter is required to obtain synchronous readings of the audio signal. Recent works aim at releasing these two requirements by estimating the time offset between each pair of microphones. However, it was assumed that the clock timing in each microphone sound card is exactly the same, which requires the clocks in the sound cards to be identically manufactured. A methodology is hereby proposed to calibrate an asynchronous microphone array using a graph-based optimisation method borrowed from the SLAM literature, effectively estimating the array geometry, time offset and clock difference/drift rate of each microphone together with the sound source locations. Simulation and experimental results are presented, which prove the effectiveness of the proposed methodology in achieving accurate estimates of the microphone array characteristics needed to be used on realistic settings with asynchronous sound devices
Kidnapped laser-scanner for evaluation of RFEC tool
© 2015 IEEE. An algorithm is proposed for matching data from different sensing modalities. The problem is formalised as a kidnapped robot problem, where Bayesian fusion is used to find the most likely location where both modalities agree. The key idea of our algorithm is to model the correlation between the two modalities as a likelihood used to update a location prior. Data, in this case, is represented as 2.5D thickness maps from a laser scanner and a Remote Field Eddy Current (RFEC) tool, used in non-destructive testing to assess the condition of infrastructures. The laser data is limited, while RFEC data is continuous. Given some prior in location, the aim is to find the 2.5D thickness map from the laser that corresponds to the RFEC data, which should be noted is highly noisy. Real data from CCTV inspections of water pipes are used to validate the proposed approach
Coupling conditionally independent submaps for large-scale 2.5D mapping with Gaussian Markov Random Fields
© 2017 IEEE. Building large-scale 2.5D maps when spatial correlations are considered can be quite expensive, but there are clear advantages when fusing data. While optimal submapping strategies have been explored previously in covariance-form using Gaussian Process for large-scale mapping, this paper focuses on transferring such concepts into information form. By exploiting the conditional independence property of the Gaussian Markov Random Field (GMRF) models, we propose a submapping approach to build a nearly optimal global 2.5D map. In the proposed approach data is fused by first fitting a GMRF to one sensor dataset; then conditional independent submaps are inferred using this model and updated individually with new data arrives. Finally, the information is propagated from submap to submap to later recover the fully updated map. This is efficiently achieved by exploiting the inherent structure of the GMRF, fusion and propagation all in information form. The key contribution of this paper is the derivation of the algorithm to optimally propagate information through submaps by only updating the common parts between submaps. Our results show the proposed method reduces the computational complexity of the full mapping process while maintaining the accuracy. The performance is evaluated on synthetic data from the Canadian Digital Elevation Data
Robust Incremental SLAM under Constrained Optimization Formulation
© 2016 IEEE. In this letter, we propose a constrained optimization formulation and a robust incremental framework for the simultaneous localization and mapping problem (SLAM). The new SLAM formulation is derived from the nonlinear least squares (NLS) formulation by mathematically formulating loop-closure cycles as constraints. Under the constrained SLAM formulation, we study the robustness of an incremental SLAM algorithm against local minima and outliers as a constraint/loop-closure cycle selection problem. We find a constraint metric that can predict the objective function growth after including the constraint. By the virtue of the constraint metric, we select constraints into the incremental SLAM according to a least objective function growth principle to increase robustness against local minima and perform χ 2 difference test on the constraint metric to increase robustness against outliers. Finally, using sequential quadratic programming (SQP) as the solver, an incremental SLAM algorithm (iSQP) is proposed. Experimental validations are provided to illustrate the accuracy of the constraint metric and the robustness of the proposed incremental SLAM algorithm. Nonetheless, the proposed approach is currently confined to datasets with sparse loop-closures due to its computational cost
Real-time sound source localisation for target tracking applications using an asynchronous microphone array
© 2015 IEEE. This paper presents a strategy for sound source localisation using an asynchronous microphone array. The proposed method is suitable for target tracking applications, in which the sound source with a known frequency is attached to the target. Conventional microphone array technologies require a multi-channel A/D converter for inter-microphone synchronization making the technology relatively expensive. In this work, the requirement of synchronization between channels is relaxed by adding an external reference audio signal. The only assumption is that the frequencies of the reference signal and the sound source attached to the target are fixed and known beforehand. By exploiting the information provided by the known reference signal, the Direction Of Arrival (DOA) of target sound source can be calculated in real-time. The key idea of the algorithm is to use the reference source to 'pseudo-align' the audio signals from different channels. Once the channels are 'pseudo-aligned', a dedicated DOA estimation method based on Time Difference Of Arrival (TDOA) can be employed to find the relative bearing information between the target sound source and microphone array. Due to the narrow band of frequency of target sound source, the proposed approach is proven to be robust to low signals-to-noise ratios. Comprehensive simulations and experimental results are presented to show the validity of the algorithm
Towards real-time 3D sound sources mapping with linear microphone arrays
© 2017 IEEE. In this paper, we present a method for real-time 3D sound sources mapping using an off-the-shelf robotic perception sensor equipped with a linear microphone array. Conventional approaches to map sound sources in 3D scenarios use dedicated 3D microphone arrays, as this type of arrays provide two degrees of freedom (DOF) observations. Our method addresses the problem of 3D sound sources mapping using a linear microphone array, which only provides one DOF observations making the estimation of the sound sources location more challenging. In the proposed method, multi hypotheses tracking is combined with a new sound source parametrisation to provide with a good initial guess for an online optimisation strategy. A joint optimisation is carried out to estimate 6 DOF sensor poses and 3 DOF landmarks together with the sound sources locations. Additionally, a dedicated sensor model is proposed to accurately model the noise of the Direction of Arrival (DOA) observation when using a linear microphone array. Comprehensive simulation and experimental results show the effectiveness of the proposed method. In addition, a real-time implementation of our method has been made available as open source software for the benefit of the community
IN2LAMA: INertial lidar localisation and mapping
© 2019 IEEE. In this paper, we introduce a probabilistic framework for INertial Lidar Localisation And MApping (IN2LAMA). Most of today's lidars are based on spinning mechanisms that do not capture snapshots of the environment. As a result, movement of the sensor can occur while scanning. Without a good estimation of this motion, the resulting point clouds might be distorted. In the lidar mapping literature, a constant velocity motion model is commonly assumed. This is an approximation that does not necessarily always hold. The key idea of the proposed framework is to exploit preintegrated measurements over upsampled inertial data to handle motion distortion without the need for any explicit motion-model. It tightly integrates inertial and lidar data in a batch on-manifold optimisation formulation. Using temporally precise upsampled preintegrated measurement allows frame-to-frame planar and edge features association. Moreover, features are re-computed when the estimate of the state changes, consolidating front-end and back-end interaction. We validate the effectiveness of the approach through simulated and real data
- …