4 research outputs found

    Mechanisms for water-use efficiency between bean cultivars tolerant to drought are different

    No full text
     The water-use efficiency (WUE) has been proposed as an alternative to mitigate the effects of climate change in agriculture and to reduce pressure on water resources, mainly in species with high water requirements which are grown under rainfed conditions. The aim of this study was to characterize the instantaneous, integral and molecular WUE of four bean cultivars contrasting in their response under limiting water conditions to compare the component mechanisms of this trait between drought tolerant and susceptible cultivars. Results indicated that tolerant cultivars increased their instantaneous WUE in comparison to susceptible ones; however, there was a difference between cultivars since Pinto Villa had a higher stomatal conductance and transpiration rate, leading to a higher water cost to produce seed than Pinto Saltillo. Furthermore, ycf2, rrn16, rpoC2, hardy, ndhK, erecta and ycf1 WUE genes were only overexpressed in Pinto Saltillo under limited water conditions, which turned out to be the most WUE efficient cultivar. Therefore, the component mechanisms of WUE are different even between drought tolerant cultivars and the mechanisms by which the tolerant cultivars increased their instantaneous and integral WUE were different.

    Simultaneous Detection of Both RNA and DNA Viruses Infecting Dry Bean and Occurrence of Mixed Infections by BGYMV, BCMV and BCMNV in the Central-West Region of Mexico

    No full text
    A multiplex reverse transcription polymerase chain reaction (RT-PCR) assay was developed to simultaneously detect bean common mosaic virus (BCMV), bean common mosaic necrotic virus (BCMNV), and bean golden yellow mosaic virus (BGYMV) from common bean leaves dried with silica gel using a single total nucleic acid extraction cetyl trimethyl ammonium bromide (CTAB) method. A mixture of five specific primers was used to amplify three distinct fragments corresponding to 272 bp from the AC1 gene of BGYMV as well as 469 bp and 746 bp from the CP gene of BCMV and BCMNV, respectively. The three viruses were detected in a single plant or in a bulk of five plants. The multiplex RT-PCR was successfully applied to detect these three viruses from 187 field samples collected from 23 municipalities from the states of Guanajuato, Nayarit and Jalisco, Mexico. Rates of single infections were 14/187 (7.5%), 41/187 (21.9%), and 35/187 (18.7%), for BGYMV, BCMV, and BCMNV, respectively; 29/187 (15.5%) samples were co-infected with two of these viruses and 10/187 (5.3%) with the three viruses. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting these viruses in the common bean and can be used for routine molecular diagnosis and epidemiological studies

    DEVELOPMENT OF AN EFFICIENT METHOD FOR in vitro GERMINATION OF SORGHUM POLLEN

    No full text
    The in vitro pollen germination of sorghum is useful in viability, physiology and genetic transformation studies of pollen. However, the media reported are not efficient. The aim of this study was to formulate an artificial medium, and to determine the optimal conditions for in vitro pollen germination of sorghum. We used a factorial arrangement of concentrations of sucrose, boric acid and calcium nitrate, also evaluated the effect of pH, relative humidity, the physical state of the medium and the stage of flower development over germination. The conditions described in this paper allowed to obtain up to 51% of in vitro pollen germination from 14 varieties of sorghum. These findings show that for increasing in vitro germination, optimal formulation of the medium is required, as well as control over relative humidity and phonological stage of pollen collection
    corecore