6 research outputs found

    Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics

    Get PDF
    This Letter reports the design, fabrication, and experimental characterization of hyperbolic materials showing negative refraction and energy funneling of airborne sound. Negative refraction is demonstrated using a stack of five holey Plexiglas plates where their thicknesses, layer separation, hole diameters, and lattice periodicity have been determined to show hyperbolic dispersion around 40 kHz. The resulting hyperbolic material shows a flat band profile in the equifrequency contour allowing the gathering of acoustic energy in a broad range of incident angles and its funneling through the material. Our demonstrations foresee interesting developments based on both phenomena. Acoustic imaging with subwavelength resolution and spot-size converters that harvest and squeeze sound waves irradiating from many directions into a collimated beam are just two possible applications among many.This work was partially supported by the Office of Naval Research (USA) under Grant No. N000140910554, and by the Ministerio de Economia y Competitividad (Spain) under Contract No. TEC2010-19751. J. C. gratefully acknowledges financial support from the Danish Council for Independent Research and a Sapere Aude Grant (12-134776).García Chocano, VM.; Christensen, J.; Sánchez-Dehesa Moreno-Cid, J. (2014). Negative refraction and energy funneling by hyperbolic materials : an experimental demonstration in acoustics. Physical Review Letters. 112(14). https://doi.org/10.1103/PhysRevLett.112.144301S1121

    Acoustic metamaterial absorbers based on multilayered sonic crystals

    Full text link
    Through the use of a layered arrangement, it is shown that lossy sonic crystals can be arranged to create a structure with extreme acoustic properties, namely, an acoustic metamaterial. This artificial structure shows different effective fluids and absorptive properties in different orientations. Theoretical, numerical, and experimental results examining thermoviscous losses in sonic crystals are presented, enabling the fabrication and characterization of an acoustic metamaterial absorber with complex-valued anisotropic inertia. To accurately describe and fabricate such an acoustic metamaterial in a realizable experimental configuration, confining structures are needed which modify the effective properties, due to the thermal and viscous boundary layer effects within the sonic crystal lattice. Theoretical formulations are presented which describe the effects of these confined sonic crystals, both individually and as part of an acoustic metamaterial structure. Experimental demonstrations are also reported using an acoustic impedance tube. The formulations developed can be written with no unknown or empirical coefficients, due to the structured lattice of the sonic crystals and organized layering scheme; and it is shown that higher filling fraction arrangements can be used to provide a large enhancement in the loss factor. (C) 2015 AIP Publishing LLC.This work was supported by the U.S. Office of Naval Research (Award No. N000141210216) and by the Spanish Ministerio de Economia y Competitividad (MINECO) under Contract No. TEC2010-19751.Guild, M.; García Chocano, VM.; Kan, W.; Sánchez-Dehesa Moreno-Cid, J. (2015). Acoustic metamaterial absorbers based on multilayered sonic crystals. Journal of Applied Physics. 117(11):114902-1-114902-14. https://doi.org/10.1063/1.4915346S114902-1114902-1411711Dowling, J. P. (1992). Sonic band structure in fluids with periodic density variations. The Journal of the Acoustical Society of America, 91(5), 2539-2543. doi:10.1121/1.402990Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325Kock, W. E., & Harvey, F. K. (1949). Refracting Sound Waves. The Journal of the Acoustical Society of America, 21(5), 471-481. doi:10.1121/1.1906536Cervera, F., Sanchis, L., Sánchez-Pérez, J. V., Martínez-Sala, R., Rubio, C., Meseguer, F., … Sánchez-Dehesa, J. (2001). Refractive Acoustic Devices for Airborne Sound. Physical Review Letters, 88(2). doi:10.1103/physrevlett.88.023902Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004Cummer, S. A., Popa, B.-I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M., & Starr, A. (2008). Scattering Theory Derivation of a 3D Acoustic Cloaking Shell. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.024301Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561Pendry, J. B., & Li, J. (2008). An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(11), 115032. doi:10.1088/1367-2630/10/11/115032Popa, B.-I., & Cummer, S. A. (2009). Design and characterization of broadband acoustic composite metamaterials. Physical Review B, 80(17). doi:10.1103/physrevb.80.174303Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301Gumen, L. N., Arriaga, J., & Krokhin, A. A. (2011). Metafluid with anisotropic dynamic mass. Low Temperature Physics, 37(11), 975-978. doi:10.1063/1.3672821Zigoneanu, L., Popa, B.-I., Starr, A. F., & Cummer, S. A. (2011). Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density. Journal of Applied Physics, 109(5), 054906. doi:10.1063/1.3552990Reyes-Ayona, E., Torrent, D., & Sánchez-Dehesa, J. (2012). Homogenization theory for periodic distributions of elastic cylinders embedded in a viscous fluid. The Journal of the Acoustical Society of America, 132(4), 2896-2908. doi:10.1121/1.4744933Naify, C. J., Chang, C.-M., McKnight, G., & Nutt, S. (2010). Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. Journal of Applied Physics, 108(11), 114905. doi:10.1063/1.3514082Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4), 041906. doi:10.1063/1.3299007Naify, C. J., Chang, C.-M., McKnight, G., Scheulen, F., & Nutt, S. (2011). Membrane-type metamaterials: Transmission loss of multi-celled arrays. Journal of Applied Physics, 109(10), 104902. doi:10.1063/1.3583656Hussein, M. I., & Frazier, M. J. (2013). Metadamping: An emergent phenomenon in dissipative metamaterials. Journal of Sound and Vibration, 332(20), 4767-4774. doi:10.1016/j.jsv.2013.04.041Zhang, Y., Wen, J., Zhao, H., Yu, D., Cai, L., & Wen, X. (2013). Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells. Journal of Applied Physics, 114(6), 063515. doi:10.1063/1.4818435Manimala, J. M., & Sun, C. T. (2014). Microstructural design studies for locally dissipative acoustic metamaterials. Journal of Applied Physics, 115(2), 023518. doi:10.1063/1.4861632Oudich, M., Zhou, X., & Badreddine Assouar, M. (2014). General analytical approach for sound transmission loss analysis through a thick metamaterial plate. Journal of Applied Physics, 116(19), 193509. doi:10.1063/1.4901997Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815García-Chocano, V. M., Cabrera, S., & Sánchez-Dehesa, J. (2012). Broadband sound absorption by lattices of microperforated cylindrical shells. Applied Physics Letters, 101(18), 184101. doi:10.1063/1.4764560Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2012). Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100(14), 144103. doi:10.1063/1.3701611Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727Tarnow, V. (1996). Compressibility of air in fibrous materials. The Journal of the Acoustical Society of America, 99(5), 3010-3017. doi:10.1121/1.414790Peyrega, C., & Jeulin, D. (2013). Estimation of acoustic properties and of the representative volume element of random fibrous media. Journal of Applied Physics, 113(10), 104901. doi:10.1063/1.4794501Perrot, C., Chevillotte, F., & Panneton, R. (2008). Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments. Journal of Applied Physics, 103(2), 024909. doi:10.1063/1.2829774Perrot, C., Chevillotte, F., & Panneton, R. (2008). Bottom-up approach for microstructure optimization of sound absorbing materials. The Journal of the Acoustical Society of America, 124(2), 940-948. doi:10.1121/1.2945115Perrot, C., Chevillotte, F., Tan Hoang, M., Bonnet, G., Bécot, F.-X., Gautron, L., & Duval, A. (2012). Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations. Journal of Applied Physics, 111(1), 014911. doi:10.1063/1.3673523Tarnow, V. (1996). Airflow resistivity of models of fibrous acoustic materials. The Journal of the Acoustical Society of America, 100(6), 3706-3713. doi:10.1121/1.417233Kuwabara, S. (1959). The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. Journal of the Physical Society of Japan, 14(4), 527-532. doi:10.1143/jpsj.14.527Tournat, V., Pagneux, V., Lafarge, D., & Jaouen, L. (2004). Multiple scattering of acoustic waves and porous absorbing media. Physical Review E, 70(2). doi:10.1103/physreve.70.026609Martin, P. A., Maurel, A., & Parnell, W. J. (2010). Estimating the dynamic effective mass density of random composites. The Journal of the Acoustical Society of America, 128(2), 571-577. doi:10.1121/1.3458849Attenborough, K. (1983). Acoustical characteristics of rigid fibrous absorbents and granular materials. The Journal of the Acoustical Society of America, 73(3), 785-799. doi:10.1121/1.389045Evans, J. M., & Attenborough, K. (2002). Sound propagation in concentrated emulsions: Comparison of coupled phase model and core-shell model. The Journal of the Acoustical Society of America, 112(5), 1911-1917. doi:10.1121/1.1510142Schoenberg, M., & Sen, P. N. (1983). Properties of a periodically stratified acoustic half‐space and its relation to a Biot fluid. The Journal of the Acoustical Society of America, 73(1), 61-67. doi:10.1121/1.388724Arnott, W. P., Bass, H. E., & Raspet, R. (1991). General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections. The Journal of the Acoustical Society of America, 90(6), 3228-3237. doi:10.1121/1.401432Fokin, V., Ambati, M., Sun, C., & Zhang, X. (2007). Method for retrieving effective properties of locally resonant acoustic metamaterials. Physical Review B, 76(14). doi:10.1103/physrevb.76.144302Baccigalupi, A. (1999). ADC testing methods. Measurement, 26(3), 199-205. doi:10.1016/s0263-2241(99)00033-0Salissou, Y., & Panneton, R. (2010). Wideband characterization of the complex wave number and characteristic impedance of sound absorbers. The Journal of the Acoustical Society of America, 128(5), 2868-2876. doi:10.1121/1.3488307Song, B. H., & Bolton, J. S. (2000). A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America, 107(3), 1131-1152. doi:10.1121/1.428404Guild, M. D., Garcia-Chocano, V. M., Kan, W., & Sánchez-Dehesa, J. (2014). Enhanced inertia from lossy effective fluids using multi-scale sonic crystals. AIP Advances, 4(12), 124302. doi:10.1063/1.490188

    Redirection of sound in straight fluid channel with elastic boundaries

    Full text link
    A fluid channel clad between two solid plates is an acoustic waveguide where excitation of elastic waves at the channel boundaries has been usually neglected. This work develops a rigorous theory of scattering of sound by a finite-length fluid channel which takes into account excitation of elastic eigenmodes of two plates acoustically coupled through a fluid channel. The theory predicts an evidently contradictory result that the transmission and reflection coefficients of a nondissipative channel do not sum up to one. Moreover, they both exhibit deep minima at the same series of frequencies. It is shown that conservation of acoustic energy occurs due to redirection of sound, since part of the acoustic flux escapes into the solid plates. This scattering becomes possible because the uniform flatness of the boundaries of a straight channel is broken by vibrations. Theoretical predictions are supported by the experiments with ultrasound transmission through a narrow slit obtained between two brass or aluminum plates submerged in water. Measured transmission spectra exhibit deep minima exactly at the frequencies where the theory predicts strong redirection of sound.This study is supported by the Office of Naval Research (USA) under Contract No. N00014-12-1-0216. A.K. acknowledges support from the program "Plan de Movilidad e Internalizacion Academica VLC/CAMPUS."Bozhko, A.; Garcia Chocano, VM.; Sánchez-Dehesa Moreno-Cid, J.; Krokhin, A. (2015). Redirection of sound in straight fluid channel with elastic boundaries. Physical review B: Condensed matter and materials physics. 91(9):094303-094303. doi:10.1103/PhysRevB.91.094303S09430309430391

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    No full text
    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial
    corecore