671 research outputs found

    Analytical modeling for the heat transfer in sheared flows of nanofluids

    Get PDF
    We developed a model for the enhancement of the heat flux by spherical and elongated nano- particles in sheared laminar flows of nano-fluids. Besides the heat flux carried by the nanoparticles the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect, it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnet limit for the spherical nanoparticles. The road ahead which should lead towards robust predictive models of heat flux enhancement is discussed.Comment: 14 pages, 10 figures, submitted to PR

    Spin-Labeling Magnetic Resonance Imaging Detects Increased Myocardial Blood Flow After Endothelial Cell Transplantation in the Infarcted Heart

    Get PDF
    Background We quantified absolute myocardial blood flow (MBF) using a spin-labeling MRI (SL-MRI) method after transplantation of endothelial cells (ECs) into the infarcted heart. Our aims were to study the temporal changes in MBF in response to EC transplantation and to compare regional MBF with contractile function (wall motion) and microvascular density. Methods and Result We first validated the SL-MRI method with the standard microsphere technique in normal rats. We then induced myocardial infarction in athymic rats and injected 5 million ECs (human umbilical vein endothelial cells) suspended in Matrigel or Matrigel alone (vehicle) along the border of the blanched infarcted area. At 2 weeks after myocardial infarction, MBF averaged over the entire slice (P=0.038) and in the infarcted region (P=0.0086) was significantly higher in EC versus vehicle group; the greater MBF was accompanied by an increase of microvasculature density in the infarcted region (P=0.0105 versus vehicle). At 4 weeks after myocardial infarction, MBF in the remote region was significantly elevated in EC-treated hearts (P=0.0277); this was accompanied by increased wall motion in this region assessed by circumferential strains (P=0.0075). Intraclass correlation coefficients and Bland-Altman plot revealed a good reproducibility of the SL-MRI method. Conclusion MBF in free-breathing rats measured by SL-MRI is validated by the standard color microsphere technique. SL-MRI allows quantification of temporal changes of regional MBF in response to EC treatment. The proof-of-principle study indicates that MBF is a unique and sensitive index to evaluate EC-mediated therapy for the infarcted heart

    Multimodality assessment of the coronary microvasculature with TIMI frame count versus perfusion PET highlights coronary changes characteristic of coronary microvascular disease

    Get PDF
    BackgroundThe diagnosis of coronary microvascular disease (CMVD) remains challenging. Perfusion PET-derived myocardial blood flow (MBF) reserve (MBFR) can quantify CMVD but is not widely available. Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) is an angiography-based method that has been proposed as a measure of CMVD. Here, we compare TFC and PET-derived MBF measurements to establish the role of TFC in assessing for CMVD. We use coronary modeling to elucidate the relationship between MBFR and TFC and propose TFC thresholds for identifying CMVD.MethodsIn a cohort of 123 individuals (age 58 ± 12.1, 63% women, 41% Caucasian) without obstructive coronary artery disease who had undergone perfusion PET and coronary angiography for clinical indications, we compared TFC and perfusion PET parameters using Pearson correlation (PCC) and linear regression modeling. We used mathematical modeling of the coronary circulation to understand the relationship between these parameters and performed Receiver Operating Curve (ROC) analysis.ResultsWe found a significant negative correlation between TFC and MBFR. Sex, race and ethnicity, and nitroglycerin administration impact this relationship. Coronary modeling showed an uncoupling between TFC and flow in epicardial vessels. In ROC analysis, TFC performed well in women (AUC 0.84–0.89) and a moderately in men (AUC 0.68–0.78).ConclusionsWe established an inverse relationship between TFC and PET-derived MBFR, which is affected by patient selection and procedural factors. TFC represents a measure of the volume of the epicardial coronary compartment, which is increased in patients with CMVD, and performs well in identifying women with CMVD

    The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury.

    Get PDF
    The mechanisms of coronavirus disease-2019 (COVID-19)-related myocardial injury comprise both direct viral invasion and indirect (hypercoagulability and immune-mediated) cellular injuries. Some patients with COVID-19 cardiac involvement have poor clinical outcomes, with preliminary data suggesting long-term structural and functional changes. These include persistent myocardial fibrosis, edema, and intraventricular thrombi with embolic events, while functionally, the left ventricle is enlarged, with a reduced ejection fraction and new-onset arrhythmias reported in a number of patients. Myocarditis post-COVID-19 vaccination is rare but more common among young male patients. Larger studies, including prospective data from biobanks, will be useful in expanding these early findings and determining their validity

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains research objectives and reports on four research projects.U. S. Atomic Energy Commission (Contract AT(30-1)-3980
    • …
    corecore