97 research outputs found
Network constraints on learnability of probabilistic motor sequences
Human learners are adept at grasping the complex relationships underlying
incoming sequential input. In the present work, we formalize complex
relationships as graph structures derived from temporal associations in motor
sequences. Next, we explore the extent to which learners are sensitive to key
variations in the topological properties inherent to those graph structures.
Participants performed a probabilistic motor sequence task in which the order
of button presses was determined by the traversal of graphs with modular,
lattice-like, or random organization. Graph nodes each represented a unique
button press and edges represented a transition between button presses. Results
indicate that learning, indexed here by participants' response times, was
strongly mediated by the graph's meso-scale organization, with modular graphs
being associated with shorter response times than random and lattice graphs.
Moreover, variations in a node's number of connections (degree) and a node's
role in mediating long-distance communication (betweenness centrality) impacted
graph learning, even after accounting for level of practice on that node. These
results demonstrate that the graph architecture underlying temporal sequences
of stimuli fundamentally constrains learning, and moreover that tools from
network science provide a valuable framework for assessing how learners encode
complex, temporally structured information.Comment: 29 pages, 4 figure
Functional brain network architecture supporting the learning of social networks in humans
Most humans have the good fortune to live their lives embedded in richly
structured social groups. Yet, it remains unclear how humans acquire knowledge
about these social structures to successfully navigate social relationships.
Here we address this knowledge gap with an interdisciplinary neuroimaging study
drawing on recent advances in network science and statistical learning.
Specifically, we collected BOLD MRI data while participants learned the
community structure of both social and non-social networks, in order to examine
whether the learning of these two types of networks was differentially
associated with functional brain network topology. From the behavioral data in
both tasks, we found that learners were sensitive to the community structure of
the networks, as evidenced by a slower reaction time on trials transitioning
between clusters than on trials transitioning within a cluster. From the
neuroimaging data collected during the social network learning task, we
observed that the functional connectivity of the hippocampus and
temporoparietal junction was significantly greater when transitioning between
clusters than when transitioning within a cluster. Furthermore, temporoparietal
regions of the default mode were more strongly connected to hippocampus,
somatomotor, and visual regions during the social task than during the
non-social task. Collectively, our results identify neurophysiological
underpinnings of social versus non-social network learning, extending our
knowledge about the impact of social context on learning processes. More
broadly, this work offers an empirical approach to study the learning of social
network structures, which could be fruitfully extended to other participant
populations, various graph architectures, and a diversity of social contexts in
future studies
Soybeans in family meals
"MP484, 2/76/3M""This publication was originally printed as Home and Garden Bulletin #208 USDA.
Network Approaches to Understand Individual Differences in Brain Connectivity: Opportunities for Personality Neuroscience
Over the past decade, advances in the interdisciplinary field of network science have provided a framework for understanding the intrinsic structure and function of human brain networks. A particularly fruitful area of this work has focused on patterns of functional connectivity derived from noninvasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI). An important subset of these efforts has bridged the computational approaches of network science with the rich empirical data and biological hypotheses of neuroscience, and this research has begun to identify features of brain networks that explain individual differences in social, emotional, and cognitive functioning. The most common approach estimates connections assuming a single configuration of edges that is stable across the experimental session. In the literature, this is referred to as a static network approach, and researchers measure static brain networks while a subject is either at rest or performing a cognitively demanding task. Research on social and emotional functioning has primarily focused on linking static brain networks with individual differences, but recent advances have extended this work to examine temporal fluctuations in dynamic brain networks. Mounting evidence suggests that both the strength and flexibility of time-evolving brain networks influence individual differences in executive function, attention, working memory, and learning. In this review, we first examine the current evidence for brain networks involved in cognitive functioning. Then we review some preliminary evidence linking static network properties to individual differences in social and emotional functioning. We then discuss the applicability of emerging dynamic network methods for examining individual differences in social and emotional functioning. We close with an outline of important frontiers at the intersection between network science and neuroscience that will enhance our understanding of the neurobiological underpinnings of social behavior
Individual Differences in Learning Social and Non-Social Network Structures
How do people acquire knowledge about which individuals belong to different cliques or communities? And to what extent does this learning process differ from the process of learning higher-order information about complex associations between non-social bits of information? Here, we employ a paradigm in which the order of stimulus presentation forms temporal associations between the stimuli, collectively constituting a complex network. We examined individual differences in the ability to learn community structure of networks composed of social versus non-social stimuli. Although participants were able to learn community structure of both social and non-social networks, their performance in social network learning was uncorrelated with their performance in non-social network learning. In addition, social traits, including social orientation and perspective-taking, uniquely predicted the learning of social community structure but not the learning of non-social community structure. Taken together, our results suggest that the process of learning higher-order community structure in social networks is partially distinct from the process of learning higher-order community structure in non-social networks. Our study design provides a promising approach to identify neurophysiological drivers of social network versus non-social network learning, extending our knowledge about the impact of individual differences on these learning processes
Associations between Coherent Neural Activity
Objective: Worldwide, tobacco use is the leading cause of preventable death and illness. One common strategy for reducing the prevalence of cigarette smoking and other health risk behaviors is the use of graphic warning labels (GWLs). This has led to widespread interest from the perspective of health psychology in understanding the mechanisms of GWL effectiveness. Here we investigated differences in how the brain responds to negative, graphic warning label-inspired antismoking ads and neutral control ads, and we probed how this response related to future behavior.
Method: A group of smokers (N = 45) viewed GWL-inspired and control antismoking ads while undergoing fMRI, and their smoking behavior was assessed before and one month after the scan. We examined neural coherence between two regions in the brain’s valuation network, the medial prefrontal cortex (MPFC) and ventralstriatum (VS).
Results: We found that greater neural coherence in the brain’s valuation network during GWL ads (relative to control ads) preceded later smoking reduction.
Conclusions: Our results suggest that the integration of information about message value may be key for message influence. Understanding how the brain responds to health messaging and relates to future behavior could ultimately contribute to the design of effective messaging campaigns, as well as more broadly to theories of message effects and persuasion across domains
Controllability of structural brain networks.
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function
Impact of Neuronal Membrane Damage on the Local Field Potential in a Large-Scale Simulation of Cerebral Cortex
Within multiscale brain dynamics, the structure–function relationship between cellular changes at a lower scale and coordinated oscillations at a higher scale is not well understood. This relationship may be particularly relevant for understanding functional impairments after a mild traumatic brain injury (mTBI) when current neuroimaging methods do not reveal morphological changes to the brain common in moderate to severe TBI such as diffuse axonal injury or gray matter lesions. Here, we created a physiology-based model of cerebral cortex using a publicly released modeling framework (GEneral NEural SImulation System) to explore the possibility that performance deficits characteristic of blast-induced mTBI may reflect dysfunctional, local network activity influenced by microscale neuronal damage at the cellular level. We operationalized microscale damage to neurons as the formation of pores on the neuronal membrane based on research using blast paradigms, and in our model, pores were simulated by a change in membrane conductance. We then tracked changes in simulated electrical activity. Our model contained 585 simulated neurons, comprised of 14 types of cortical and thalamic neurons each with its own compartmental morphology and electrophysiological properties. Comparing the functional activity of neurons before and after simulated damage, we found that simulated pores in the membrane reduced both action potential generation and local field potential (LFP) power in the 1–40 Hz range of the power spectrum. Furthermore, the location of damage modulated the strength of these effects: pore formation on simulated axons reduced LFP power more strongly than did pore formation on the soma and the dendrites. These results indicate that even small amounts of cellular damage can negatively impact functional activity of larger scale oscillations, and our findings suggest that multiscale modeling provides a promising avenue to elucidate these relationships
- …