5 research outputs found

    Π ΠžΠ›Π¬ ΠžΠšΠ˜Π‘Π›Π˜Π’Π•Π›Π¬ΠΠžΠ™ ΠœΠžΠ”Π˜Π€Π˜ΠšΠΠ¦Π˜Π˜ Π‘Π•Π›ΠšΠžΠ’ Π’ Π Π•Π”ΠžΠšΠ‘-Π Π•Π“Π£Π›Π―Π¦Π˜Π˜ ΠΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π˜ ΠšΠΠ‘ΠŸΠΠ—Π«-3 Π’ Π›Π˜ΠœΠ€ΠžΠ¦Π˜Π’ΠΠ₯ ΠšΠ ΠžΠ’Π˜ ПРИ ΠžΠšΠ˜Π‘Π›Π˜Π’Π•Π›Π¬ΠΠžΠœ Π‘Π’Π Π•Π‘Π‘Π• IN VITRO

    Get PDF
    The formation of oxidative stress lies at the heart of many frequent and socially-important diseases. Blood lymphocytes are the cells which provide immunological control of our organism. As a result of their function implementation blood lymphocytes contact with different endogenic and exogenic factors, which can lead to active oxygen species production activation, macromolecules oxidative modification and to cell survival alteration. At the present time it is essential to expand and deepen the fundamental knowledge of blood lymphocytes apoptosis regulation peculiarities. The research objective was to establish the interaction among alterations of glutathione system condition, carbonylation level, protein glutathionylation and caspase-3 activity in blood lymphocytes during oxidative stress in vitro.Material and Methods. The material for research was blood lymphocytes cultivated with addition of hydrogen peroxide in final concentration of 0,5 mmol and/or protein SH-group inhibitor N-ethylmaleimide – 5 mmol, protector – 5 mmol – 1,4-dithioerythritol. Reduced, oxidized and protein-bound glutathione concentration was measured by method of spectropho-tometry, additionally, the ratio size of reduced to oxidized thiol fraction was estimated. With help of enzymoimmunoassay the level of protein carbonyl derivatives was evaluated; caspase-3 activity was registered by spectrofluorometric method.Results. Protein SH-group blocking in blood lymphocytes during oxidative stress in vitro was accompanied by protein-bound glutathione concentration rapid decrease in connection with increase of protein carbonyl derivatives content and caspase-3 activity. Protein SH-group protection in blood lymphocytes during oxidative stress in vitro was accompanied by concentration increase of protein-bound glutathione and protein carbonyl derivatives under comparable values of enzyme activity under study.Conclusion. The carried out research shows that caspase-3 and protein-bound glutathione are the molecular targets of selective control over programmed cell death. The received indices of caspase-3 activity change and protein-bound glutathione concentration alteration in blood lymphocytes during oxidative stress in vitro can be used when elaborating target therapy approaches to diseases accompanied by apoptosis disregulation.Π’ основС ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π° ΠΌΠ½ΠΎΠ³ΠΈΡ… распространСнных ΠΈ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π»Π΅ΠΆΠΈΡ‚ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ стрСсса. Π›ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΊΡ€ΠΎΠ²ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈ иммунологичСский ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ происходит ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΊΡ€ΠΎΠ²ΠΈ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ эндогСнными ΠΈ экзогСнными Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ интСнсификации ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода, ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ измСнСнию выТиваСмости ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ являСтся Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ ΠΈ ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Π½ΠΈΠΉ ΠΎΠ± особСнностях рСгуляции Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΊΡ€ΠΎΠ²ΠΈ.ЦСль исслСдования – ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ состояния систСмы Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π°, ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ карбонилирования, глутатионилирования Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ каспазы-3 Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ стрСссС in vitro.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ для исслСдования слуТили Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΊΡ€ΠΎΠ²ΠΈ, ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ с Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ пСроксида Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° Π² ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 0,5 ммоль ΠΈ (ΠΈΠ»ΠΈ) Π±Π»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π° SH-Π³Ρ€ΡƒΠΏΠΏ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ² N-этилмалСимида – 5 ммоль, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΎΡ€Π° – 5 ммоль – 1,4-дитиоэритритола. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ спСктрофотомСтрии опрСдСляли ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ восстановлСнного, окислСнного ΠΈ бСлковосвязанного Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π°, Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ рассчитывали Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ восстановлСнной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ Ρ‚ΠΈΠΎΠ»Π° ΠΊ окислСнной. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΈΠΌΠΌΡƒΠ½ΠΎ-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ², Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ каспазы-3 рСгистрировали ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡ„Π»ΡŽΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘Π»ΠΎΠΊΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ SH-Π³Ρ€ΡƒΠΏΠΏ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ² Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ стрСссС in vitro ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ Ρ€Π΅Π·ΠΊΠΈΠΌ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-связанного Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° Π½Π° Ρ„ΠΎΠ½Π΅ увСличСния содСрТания ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² ΠΈ активности каспазы-3. ΠŸΡ€ΠΎΡ‚Π΅ΠΊΡ†ΠΈΡ SH-Π³Ρ€ΡƒΠΏΠΏ Π±Π΅Π»ΠΊΠΎΠ² Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ стрСссС in vitro ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»Π°ΡΡŒ возрастаниСм ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-связанного Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π°, ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ² ΠΏΡ€ΠΈ сопоставимых значСниях активности ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ каспаза-3 ΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-связанный Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½ ΡΠ²Π»ΡΡŽΡ‚ΡΡ молСкулярными мишСнями сСлСктивного управлСния ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ гибСлью. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ измСнСния активности каспазы-3 ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΠΎ-связанного Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ стрСссС in vitro ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² Ρ‚Π°Ρ€Π³Π΅Ρ‚Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ…ΡΡ дисрСгуляциСй Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°

    ΠΠΠ Π£Π¨Π•ΠΠ˜Π― Π­ΠšΠ‘ΠŸΠ Π•Π‘Π‘Π˜Π˜ МРНК HSP27 И Π£Π‘Π˜ΠšΠ’Π˜Π’Π˜ΠΠ КАК ΠœΠ•Π₯ΠΠΠ˜Π—Πœ Π£Π‘ΠšΠžΠ›Π¬Π—ΠΠΠ˜Π― ОПУΠ₯ΠžΠ›Π•Π’Π«Π₯ ΠšΠ›Π•Π’ΠžΠš Π›Π˜ΠΠ˜Π˜ JURKAT ОВ ΠΠŸΠžΠŸΠ’ΠžΠ—Π

    Get PDF
    The research objective is to establish the link between heat shock protein 27 and ubiquitin mRNA expression as well as Jukart tumor cell apoptosis.The method of flow cytofluorometry has been used to evaluate apoptosis realization using FITC-labeled annexin V and propidium iodide along with the amount of reactive oxygen species. Spectrofluorimetry has been applied to register the caspase-3 activity. The content of hydroxyl radicals has been determined by spectrophotometry. The level of ubiquitin and heat shock protein 27 mRNA expression has been identified using real-time PCR. Intact Jukart tumor cells and blood lymphocytes of healthy donors served the material for the research.Following the carried out research it has been found out that the fall in the amount of annexin V positive cells and the reduced caspase-3 activity were accompanied by the rise in the content of hydroxyl radicals and reactive oxygen species against the backdrop of the increased heat shock protein 27 and ubiquitin mRNA expression in Jukart tumor cells.ЦСль исслСдования – ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ экспрСссиСй мРНК Π±Π΅Π»ΠΊΠ° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока 27, ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½Π° ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ Jurkat.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡŽΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΎΡ†Π΅Π½ΠΊΡƒ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° с использованиСм FITS-ΠΌΠ΅Ρ‡Π΅Π½Π½ΠΎΠ³ΠΎ аннСксина V ΠΈ пропидия ΠΈΠΎΠ΄ΠΈΠ΄Π°, количСства Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода, ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΒ¬Ρ„Π»ΡŽΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ рСгистрировали Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ каспазы-3. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ Π³ΠΈΠ΄Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠΊΠ°Π»Π° опрСдСляли спСктрофотомСтричСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии мРНК ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½Π° ΠΈ Π±Π΅Π»ΠΊΠ° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока 27 – с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ для исслСдования слуТили ΠΈΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Π΅ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π»ΠΈΠ½ΠΈΠΈ Jurkat ΠΈ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΊΡ€ΠΎΠ²ΠΈ Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ².Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ исслСдования установлСно, Ρ‡Ρ‚ΠΎ сниТСниС количСства аннСксин-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ активности каспазы-3 ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ содСрТания Π³ΠΈΠ΄Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠΊΠ°Π»Π° ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода Π½Π° Ρ„ΠΎΠ½Π΅ усилСния экспрСссии мРНК Π±Π΅Π»ΠΊΠ° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока 27 ΠΈ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½Π° Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ Jurkat

    Π‘Π˜Π‘Π’Π•ΠœΠ Π“Π›Π£Π’ΠΠ’Π˜ΠžΠΠ УЧАБВВУЕВ Π’ Π Π•Π“Π£Π›Π―Π¦Π˜Π˜ ΠΠŸΠžΠŸΠ’ΠžΠ—Π ОПУΠ₯ΠžΠ›Π•Π’Π«Π₯ ΠšΠ›Π•Π’ΠžΠš

    Get PDF
    The research objective is to determine the role of the gluthatione system components in realization of the receptor pathway of Jukart tumor cell apoptosis.Apoptosis realization using FITC-labeled annexin V and propidium iodide as well as the amount of TNFΒ R1- and Fas-presenting cells has been evaluated by flow cytofluorometry; activity caspase-3 registered a spektroflyuorimetrichesky method. The concentration of reduced and oxidated gluthatione has been determined by spectrophotometry.The material for the research was intact Jukart tumor cells and the ones incubated in the presence of a selective inhibitor of the key gluthatione synthesis enzyme – buthionine-sulfoximine.The research has shown that the gluthatione system plays an important regulatory role in activation of the receptor pathway of Jukart tumor cell apoptosis.The gluthatione system components are targets for activation of programmed cell death in tumor growth.ЦСль исслСдования – Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Ρ€ΠΎΠ»ΡŒ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² систСмы Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° Π² Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π»ΠΈΠ½ΠΈΠΈ Jurkat.ΠžΡ†Π΅Π½ΠΊΡƒ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡŽΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ с использованиСм FITS-ΠΌΠ΅Ρ‡Π΅Π½Π½ΠΎΠ³ΠΎ аннСксина V ΠΈ пропидия ΠΈΠΎΠ΄ΠΈΠ΄Π°, количСства TNFΒ R1- ΠΈ Fas-ΠΏΡ€Π΅Π·Π΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ; Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ каспазы-3 рСгистрировали ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡ„Π»ΡŽΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ содСрТания восстановлСнного ΠΈ окислСнного Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° осущСствляли спСктрофотомСтричСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ для исслСдования слуТили ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π»ΠΈΠ½ΠΈΠΈ Jurkat: ΠΈΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Π΅ ΠΈ ΠΈΠ½ΠΊΡƒΠ±ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² присутствии сСлСктивного ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° синтСза Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° – Π±ΡƒΡ‚ΠΈΠΎΠ½ΠΈΠ½-ΡΡƒΠ»ΡŒΡ„ΠΎΠΊΡΠΈΠΌΠΈΠ½Π°.ИсслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ систСма Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° ΠΈΠ³Ρ€Π°Π΅Ρ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€Π΅Π³ΡƒΠ»ΡΡ‚ΠΎΡ€Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π»ΠΈΠ½ΠΈΠΈ Jurkat.ΠšΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ систСмы Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ мишСнями для Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ ΠΏΡ€ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΌ ростС

    THE ROLE OF PROTEIN OXIDATIVE MODIFICATION IN REDOX-REGULATION OF CASPASE-3 ACTIVITY IN BLOOD LYMPHOCYTES DURING OXIDATIVE STRESS IN VITRO

    No full text
    The formation of oxidative stress lies at the heart of many frequent and socially-important diseases. Blood lymphocytes are the cells which provide immunological control of our organism. As a result of their function implementation blood lymphocytes contact with different endogenic and exogenic factors, which can lead to active oxygen species production activation, macromolecules oxidative modification and to cell survival alteration. At the present time it is essential to expand and deepen the fundamental knowledge of blood lymphocytes apoptosis regulation peculiarities. The research objective was to establish the interaction among alterations of glutathione system condition, carbonylation level, protein glutathionylation and caspase-3 activity in blood lymphocytes during oxidative stress in vitro.Material and Methods. The material for research was blood lymphocytes cultivated with addition of hydrogen peroxide in final concentration of 0,5 mmol and/or protein SH-group inhibitor N-ethylmaleimide – 5 mmol, protector – 5 mmol – 1,4-dithioerythritol. Reduced, oxidized and protein-bound glutathione concentration was measured by method of spectropho-tometry, additionally, the ratio size of reduced to oxidized thiol fraction was estimated. With help of enzymoimmunoassay the level of protein carbonyl derivatives was evaluated; caspase-3 activity was registered by spectrofluorometric method.Results. Protein SH-group blocking in blood lymphocytes during oxidative stress in vitro was accompanied by protein-bound glutathione concentration rapid decrease in connection with increase of protein carbonyl derivatives content and caspase-3 activity. Protein SH-group protection in blood lymphocytes during oxidative stress in vitro was accompanied by concentration increase of protein-bound glutathione and protein carbonyl derivatives under comparable values of enzyme activity under study.Conclusion. The carried out research shows that caspase-3 and protein-bound glutathione are the molecular targets of selective control over programmed cell death. The received indices of caspase-3 activity change and protein-bound glutathione concentration alteration in blood lymphocytes during oxidative stress in vitro can be used when elaborating target therapy approaches to diseases accompanied by apoptosis disregulation

    ΠŸΠ΅ΠΏΡ‚ΠΈΠ΄Π΅Ρ€Π³Ρ–Ρ‡Π½Π° рСгуляція Π½ΠΈΡ€ΠΊΠΎΠ²ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΉ

    No full text
    The paper discusses the topical research problem of the mechanisms of a peptidergic regulation of the renal function, involving the natural peptide complex derived from the renal cortical substance (RCS). It has been demonstrated that the RCS manifests tissue specifity, the ability to affect the renal functional status – the processes of filtration, reabsorption and secretion under physiological conditions and under the modulation of secretion and reabsorption by physiologically active substances; the ability to affect biochemical reactions, hemocoagulation, DNA biosynthesis. The following interaction with cells of the immune system has been determined for RCS: the ability to modulate the activity of peripheral blood lymphocytes (mainly T-cells); to induce morphofunctional restructuring in the thymus; to restore the natural state of immunological tolerance in the organism of laboratory animals to a mixture of tissue antigens; to alter the surface expression of antigenic determinants of lymphocytes and mannose-containing membrane structures; to influence on the apoptosis of lymphocytes and thymocytes. The physiological activity of the RCS pertaining to the indices of the peripheral blood and liver functions has been evaluated. The effect of synthetic peptide-analogues of the RCS (PEKDLRK, PEKDSRK, PEKDDRL) has been synthesized and investigated. The obtained results confirm the existence of a local peptide regulation system in the kidneys which is implemented through the formation of low molecular weight peptide substances and affects physiological processes not only in the kidneys, but also in other organs and systems. A wide range of the physiological activity of the RCS and synthetic peptides created on its basis are indicative of the prospects of their further research in order to develop effective medications for renal pathology.Π Π°Π±ΠΎΡ‚Π° посвящСна Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ исслСдования ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² пСптидэргичСской рСгуляции Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΡ‡Π΅ΠΊ ΠΏΡ€ΠΈ участии ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠ³ΠΎ комплСкса, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠΎΡ€ΠΊΠΎΠ²ΠΎΠ³ΠΎ вСщСства ΠΏΠΎΡ‡Π΅ΠΊ (ПКП). Показано, Ρ‡Ρ‚ΠΎ ПКП ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Ρ‚ΠΊΠ°Π½Π΅ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ состояниС ΠΏΠΎΡ‡Π΅ΠΊ – Π½Π° процСссы Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, рСабсорбции ΠΈ сСкрСции ΠΏΡ€ΠΈ физиологичСских условиях ΠΈ ΠΏΡ€ΠΈ модуляции сСкрСции ΠΈ рСабсорбции физиологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ вСщСствами; Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° состояниС биохимичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, Π³Π΅ΠΌΠΎΠΊΠΎΠ°Π³ΡƒΠ»ΡΡ†ΠΈΡŽ, биосинтСз Π”ΠΠš. Для ПКП ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ взаимодСйствиС с ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы - ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ (прСимущСствСнно Π’-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ), Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΌΠΎΡ€Ρ„ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ пСрСстройку Π² тимусС, Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒ состояниС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠΉ иммунологичСской толСрантности ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΊ смСси Ρ‚ΠΊΠ°Π½Π΅Π²Ρ‹Ρ… Π°Π½Ρ‚ΠΈΠ³Π΅Π½ΠΎΠ², ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ повСрхностных Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π½Ρ‹Ρ… Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ маннозосодСрТащих ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… структур, Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° процСссы Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ Ρ‚ΠΈΠΌΠΎΡ†ΠΈΡ‚ΠΎΠ². ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ПКП ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ ΠΈ ΠΏΠ΅Ρ‡Π΅Π½ΠΎΡ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ ΠΈ исслСдовано влияниС синтСтичСских ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ²-Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² ПКП – PEKDLRK, PEKDSRK, PEKDDRL. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ сущСствованиС Π² ΠΏΠΎΡ‡ΠΊΠ°Ρ… локальной систСмы ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠΉ рСгуляции, которая рСализуСтся ΠΏΡƒΡ‚Π΅ΠΌ образования низкомолСкулярных ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹Ρ… вСщСств ΠΈ влияСт Π½Π° физиологичСскиС процСссы Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΠΏΠΎΡ‡ΠΊΠ°Ρ…, Π½ΠΎ ΠΈ Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½Π°Ρ… ΠΈ систСмах. Π¨ΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр физиологичСской активности ПКП ΠΈ синтСтичСских ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ², созданных Π½Π° Π΅Π³ΠΎ основС, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ пСрспСктивности дальнСйшСго ΠΈΡ… исслСдования с Ρ†Π΅Π»ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ эффСктивных лСкарствСнных срСдств ΠΏΡ€ΠΈ ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ.Π ΠΎΠ±ΠΎΡ‚Π° присвячСна Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ–ΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ– дослідТСння ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π² ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π΅Ρ€Π³Ρ–Ρ‡Π½ΠΎΡ— рСгуляції Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— Π½ΠΈΡ€ΠΎΠΊ Π·Π° ΡƒΡ‡Π°ΡΡ‚ΡŽ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠ³ΠΎ комплСксу (ПКН), ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΠ³ΠΎ Ρ–Π· ΠΊΡ–Ρ€ΠΊΠΎΠ²ΠΎΡ— Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ Π½ΠΈΡ€ΠΎΠΊ. Показано, Ρ‰ΠΎ ПКН Π²ΠΎΠ»ΠΎΠ΄Ρ–Ρ” Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΎΡΠΏΠ΅Ρ†ΠΈΡ„Ρ–Ρ‡Π½Ρ–ΡΡ‚ΡŽ, Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŽ Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΠΉ стан Π½ΠΈΡ€ΠΎΠΊ – Π½Π° процСси Ρ„Ρ–Π»ΡŒΡ‚Ρ€Π°Ρ†Ρ–Ρ—, рСабсорбції Ρ‚Π° сСкрСції Π·Π° Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΡƒΠΌΠΎΠ² Ρ– ΠΏΡ€ΠΈ модуляції сСкрСції Ρ‚Π° рСабсорбції Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½Π°ΠΌΠΈ; Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ Π½Π° стан Π±Ρ–ΠΎΡ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉ, Π³Π΅ΠΌΠΎΠΊΠΎΠ°Π³ΡƒΠ»ΡΡ†Ρ–ΡŽ, біосинтСз Π”ΠΠš. Для ПКН Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΡŽ Π· ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°ΠΌΠΈ Ρ–ΠΌΡƒΠ½Π½ΠΎΡ— систСми – Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ ΠΌΠΎΠ΄ΡƒΠ»ΡŽΠ²Π°Ρ‚ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π»Ρ–ΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ–Π² ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡ‡Π½ΠΎΡ— ΠΊΡ€ΠΎΠ²Ρ– (ΠΏΠ΅Ρ€Π΅Π²Π°ΠΆΠ½ΠΎ Π’-ΠΊΠ»Ρ–Ρ‚ΠΈΠ½), Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ‚ΠΈ ΠΌΠΎΡ€Ρ„ΠΎΡ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½Ρƒ ΠΏΠ΅Ρ€Π΅Π±ΡƒΠ΄ΠΎΠ²Ρƒ Π² тимусі, Π²Ρ–Π΄Π½ΠΎΠ²Π»ΡŽΠ²Π°Ρ‚ΠΈ стан ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΡ— Ρ–ΠΌΡƒΠ½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— толСрантності ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡƒ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΈΡ… Ρ‚Π²Π°Ρ€ΠΈΠ½ Π΄ΠΎ ΡΡƒΠΌΡ–ΡˆΡ– Ρ‚ΠΊΠ°Π½ΠΈΠ½Π½ΠΈΡ… Π°Π½Ρ‚ΠΈΠ³Π΅Π½Ρ–Π², Π·ΠΌΡ–Π½ΡŽΠ²Π°Ρ‚ΠΈ Π΅ΠΊΡΠΏΡ€Π΅ΡΡ–ΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π½ΠΈΡ… Π΄Π΅Ρ‚Π΅Ρ€ΠΌΡ–Π½Π°Π½Ρ‚ Π»Ρ–ΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ–Π² Ρ‚Π° манозомісних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΈΡ… структур, Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ Π½Π° процСси Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Ρƒ Π»Ρ–ΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ–Π² Ρ‚Π° Ρ‚ΠΈΠΌΠΎΡ†ΠΈΡ‚Ρ–Π². Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ПКН стосовно ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡ‡Π½ΠΎΡ— ΠΊΡ€ΠΎΠ²Ρ– Ρ‚Π° ΠΏΠ΅Ρ‡Ρ–Π½ΠΊΠΎΠ²ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΉ. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½ΠΎ Ρ‚Π° дослідТСно Π²ΠΏΠ»ΠΈΠ² ΡˆΡ‚ΡƒΡ‡Π½ΠΈΡ… ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ–Π²Π°Π½Π°Π»ΠΎΠ³Ρ–Π² ПКН – PEKDLRK, PEKDSRK, PEKDDRL. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΡŽΡ‚ΡŒ існування Π² Π½ΠΈΡ€ΠΊΠ°Ρ… Π»ΠΎΠΊΠ°Π»ΡŒΠ½ΠΎΡ— систСми ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΡ— рСгуляції, яка Ρ€Π΅Π°Π»Ρ–Π·ΡƒΡ”Ρ‚ΡŒΡΡ ΡˆΠ»ΡΡ…ΠΎΠΌ утворСння Π½ΠΈΠ·ΡŒΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΈΡ… ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Ρ‚Π° Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– процСси Π½Π΅ Ρ‚Ρ–Π»ΡŒΠΊΠΈ Π² Π½ΠΈΡ€ΠΊΠ°Ρ…, Π°Π»Π΅ ΠΉ Π² Ρ–Π½ΡˆΠΈΡ… ΠΎΡ€Π³Π°Π½Π°Ρ… Ρ‚Π° систСмах. Π¨ΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності ПКН Ρ‚Π° синтСтичних ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ–Π², створСних Π½Π° ΠΉΠΎΠ³ΠΎ основі, ΡΠ²Ρ–Π΄Ρ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ подальшого Ρ—Ρ… дослідТСння Π· ΠΌΠ΅Ρ‚ΠΎΡŽ Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… засобів ΠΏΡ€ΠΈ Π½ΠΈΡ€ΠΊΠΎΠ²Ρ–ΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ—
    corecore