8 research outputs found

    Transports de Na+ et K+ chez le riz (caractérisation de transporteurs et co-transporteurs de Na+ et K+ de la famille HKT)

    No full text
    Un prélèvement efficace de K+ à partir du sol est essentiel au développement des végétaux. Sur un sol riche en NaCl, le maintien d'un prélèvement sélectif et efficace de K+ à partir du sol et le contrôle de l'exportation de Na+ par la racine vers les feuilles constituent des fonctions essentielles pour la survie de la plante. Chez les plantes, les transporteurs HKT (High-affinity K+ Transporters) sont classés en deux sous-familles sur des bases phylogénétiques et de sélectivité ionique. Les membres de la sous-famille 1 transportent sélectivement Na+. Plusieurs d'entre eux ont été identifiés comme des acteurs majeurs de l'adaptation des plantes aux fortes salinités du sol en prévenant l'accumulation de Na+ dans les parties aériennes. Les membres de la sous-famille 2 co-transportent Na+ et K+. Leur rôle dans la plante, notamment dans le transport de K+, est encore mal compris. Je me suis intéressé à différents systèmes de transports de K+ et Na+, appartenant essentiellement à la famille HKT chez le riz. La caractérisation que j'ai effectuée a fait appel à plusieurs approches : électrophysiologie (voltage-clamp après expression en ovocyte de xénope), biologie cellulaire, génétique inverse et PCR en temps réel. L'analyse de l'expression par RT-PCR en temps réel de toute la famille HKT (4 membres dans chacune des deux sous-familles) a montré que ces transporteurs sont différemment exprimés au niveau des racines et des feuilles, et que leur niveau de transcrits est fortement et differentiellement régulé en conditions de stress salin ou osmotique et en présence d'hormones, ce qui suggère que ces différents systèmes jouent des rôles propres et diversifiés dans la plante. L'analyse plus détaillée d'OsHKT2;4, a montré par expression hétérologue dans l'ovocyte de xénope que ce système possède des propriétés fonctionnelles originales: il transporte sélectivement K+ à faibles concentrations de Na+, mais co-transporte Na+ et K+ à fortes concentrations de Na+ (>10 mM). L'analyse de l'expression d'OsHKT2;4 a révélé que ce transporteur est surexprimé en condition de carence en K+ et de stress salin, suggérant qu'OsHKT2;4 pourrait jouer un rôle important dans le transport de K+ dans ces deux conditions. Enfin, un patron d'expression nouveau pour un transporteur HKT a été révélé par l'analyse de plantes transgéniques exprimant le promoteur d'OsHKT2;4 fusionné aux gènes rapporteurs GUS ou GFP : en plus d'une localisation classique dans les tissus conducteurs, une forte expression est observée dans les stomates des gaines et des limbes foliaires, suggérant un rôle dans l'osmocontractilité de ces cellules.Mots clés: Oryza sativa, transport de potassium, transporteur HKT, Na+-K+ co-transporteur, électrophysiologie, ovocyte de xénope, localisation tissulaire, PCR quantitative, stress salinEfficient uptake of K+ from the soil solution is essential for plant development. When plants are grown on a soil rich in NaCl, the maintenance of an efficient and selective uptake of K+ and the control of Na+ export from roots to shoots are crucial for plant survival. In plants, transporters belonging to the HKT (Highaffinity K+ Transport) family have been sorted in two subfamilies based on phylogenetic grounds and functional properties. Subfamily 1 members transport selectively Na+. Several of them have been shown to play major roles in plant adaptation to salt stress by preventing excessive accumulation of Na+ in shoots. Subfamily 2 members are thought to co-transport Na+ and K+, at least when expressed in heterologous systems. Their roles in planta, especially their potential role in K+ transport, are still largely unknown. I have been interested in different K+ and/or Na+ transport systems in rice, mostly belonging to the HKT family. For their characterization, different approaches have been used: electrophysiology (two-electrode voltage-clamp after expression in Xenopus oocytes), cell biology, reverse genetics and real-time PCR. Realtime RT-PCR analyses on the whole family of rice HKT transporters (4 members in both subfamilies) showed that the expression level in roots and leaves of these different systems is variable, and is differentially regulated by salt and osmotic stresses as well as by hormonal treatments, which suggests that these transporters have diverse and differentiated functions in the plant. A detailed analysis of OsHKT2;4 revealed original functional properties: this HKT transporter was indeed shown to be K+-selectively in the presence of low external Na+, but to switch to Na+ and K+ co-transport mode at high (>10 mM) Na+ concentrations. Expression analysis of OsHKT2;4 showed that this transporter is overexpressed upon salt stress and K+ shortage, which suggests that it could play an important role in K+ transport in these two conditions. At last, a new expression pattern for an HKT transporter was evidenced through the analysis of transgenic rice plants expressing OsHKT2;4 promoter fused to the GUS or GFP reporter genes: in addition to a classical localization in vascular tissues, expression of OsHKT2;4 was observed in stomata, suggesting a role for OsHKT2;4 in osmotic regulation in these cellsMONTPELLIER-SupAgro La Gaillarde (341722306) / SudocSudocFranceF

    Internal Cs+ inhibits root elongation in rice

    Full text link
    The root system anchors the plant to the soil and contributes to plant autotrophy by taking up nutrients and water. In relation with this nutritional function, root development is largely impacted by availability of nutrients and water. Due to human activity, plants, in particular crops, can also be exposed to pollutants which can be absorbed and incorporated into the food chain. Cesium in soils is present at non-toxic concentrations for the plant (micromolar or less), even in soils highly polluted with radioactive cesium due to nuclear accidents. Here, we report on the morphological response of rice roots to Cs+ at micromolar concentrations. It is shown that Cs+ reduces root elongation without affecting root dry weight. Noteworthy, inactivation of the Cs+-permeable K+ transporter OsHAK1 prevents such effect of Cs+, suggesting that internal Cs+ triggers the modification of the root system

    Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family.

    No full text
    International audienceBacterial Trk and Ktr, fungal Trk and plant HKT form a family of membrane transporters permeable to K(+) and/or Na(+) and characterized by a common structure probably derived from an ancestral K(+) channel subunit. This transporter family, specific of non-animal cells, displays a large diversity in terms of ionic permeability, affinity and energetic coupling (H(+)-K(+) or Na(+)-K(+) symport, K(+) or Na(+) uniport), which might reflect a high need for adaptation in organisms living in fluctuating or dilute environments. Trk/Ktr/HKT transporters are involved in diverse functions, from K(+) or Na(+) uptake to membrane potential control, adaptation to osmotic or salt stress, or Na(+) recirculation from shoots to roots in plants. Structural analyses of bacterial Ktr point to multimeric structures physically interacting with regulatory subunits. Elucidation of Trk/Ktr/HKT protein structures along with characterization of mutated transporters could highlight functional and evolutionary relationships between ion channels and transporters displaying channel-like features

    The Rice monovalent cation transporter OsHKT2;4: Revisited ionic selectivity

    Full text link
    The family of plant membrane transporters named HKT (for high-affinity K+ transporters) can be subdivided into subfamilies 1 and 2, which, respectively, comprise Na+-selective transporters and transporters able to function as Na+-K+ symporters, at least when expressed in yeast (Saccharomyces cerevisiae) or Xenopus oocytes. Surprisingly, a subfamily 2 member from rice (Oryza sativa), OsHKT2;4, has been proposed to form cation/K+ channels or transporters permeable to Ca2+ when expressed in Xenopus oocytes. Here, OsHKT2;4 functional properties were reassessed in Xenopus oocytes. A Ca2+ permeability through OsHKT2;4 was not detected, even at very low external K+ concentration, as shown by highly negative OsHKT2;4 zero-current potential in high Ca2+ conditions and lack of sensitivity of OsHKT2;4 zero-current potential and conductance to external Ca2+. The Ca2+ permeability previously attributed to OsHKT2;4 probably resulted from activation of an endogenous oocyte conductance. OsHKT2;4 displayed a high permeability to K+ compared with that to Na+ (permeability sequence: K+ . Rb+ _ Cs+ . Na+ _ Li+ _ NH4 +). Examination of OsHKT2;4 current sensitivity to external pH suggested that H+ is not significantly permeant through OsHKT2;4 in most physiological ionic conditions. Further analyses in media containing both Na+ and K+ indicated that OsHKT2;4 functions as K+-selective transporter at low external Na+, but transports also Na+ at high (.10 mM) Na+ concentrations. These data identify OsHKT2;4 as a new functional type in the K+ and Na+-permeable HKT transporter subfamily. Furthermore, the high permeability to K+ in OsHKT2;4 supports the hypothesis that this system is dedicated to K+ transport in the plant. (Résumé d'auteur

    Arbuscular mycorrhizal fungus Rhizophagus irregularis expresses an outwardly Shaker-like channel involved in potassium nutrition of rice ( Oryza sativa L.)

    No full text
    Abstract Potassium (K + ) plays crucial roles in many physiological, molecular and cellular processes in plants. Direct uptake of this nutrient by root cells has been extensively investigated, however, indirect uptake of K + mediated by the interactions of the roots with fungi in the frame of a mutualistic symbiosis, also called mycorrhizal nutrient uptake pathway, is much less known. We identified an ion channel in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis . This channel exhibits the canonical features of Shaker-like channel shared in other living kingdoms and is named RiSKC3. Transcriptionally expressed in hyphae and in arbuscules of colonized rice roots, RiSKC3 has been shown to be located in the plasma membrane. Voltage-clamp functional characterization in Xenopus oocytes revealed that RiSKC3 is endowed with outwardly-rectifying voltage-gated activity with a high selectivity for K + over sodium ions. RiSKC3 may have a role in the AM K + pathway for rice nutrition in normal and salt stress conditions. The current working model proposes that K + ions taken up by peripheral hyphae of R. irregularis are secreted towards the host root into periarbuscular space by RiSKC3. Significance Statement Mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi are beneficial for about 80% of land plants thanks to an exchange of nutrients. The AM pathway responsible for potassium (K + ) nutrition of the plant is not known. Here we uncovered a key step of this phenomenon, by functionally characterizing the first transport system in the AM fungus Rhizophagus irregularis , and we univocally demonstrated that RiSKC3 is an K + outwardly-rectifying voltage-gated Shaker-like channel
    corecore