84 research outputs found
STM/STS Study on 4a X 4a Electronic Charge Order of Superconducting Bi2Sr2CaCu2O8+d
We performed low-bias STM measurements on underdoped Bi2212 crystals, and
confirmed that a two-dimensional (2D) superstructure with a periodicity of four
lattice constants (4a) is formed within the Cu-O plane at T<Tc. This 4a X 4a
superstructure, oriented along the Cu-O bonding direction, is nondispersive and
more intense in lightly doped samples with a zero temperature pseudogap (ZTPG)
than in samples with a d-wave gap. The nondispersive 4a X 4a superstructure was
clearly observed within the ZTPG or d-wave gap, while it tended to fade out
outside the gaps. The present results provide a useful test for various models
proposed for an electronic order hidden in the underdoped region of high-Tc
cuprates.Comment: 4 pages, submitted to J. Phys. Soc. Jp
Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2
High-transition-temperature (high-Tc) superconductivity is ubiquitous in the
cuprates containing CuO2 planes but each cuprate has its own character. The
study of the material dependence of the d-wave superconducting gap (SG) should
provide important insights into the mechanism of high-Tc. However, because of
the 'pseudogap' phenomenon, it is often unclear whether the energy gaps
observed by spectroscopic techniques really represent the SG. Here, we report
spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of
nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They
enable us to observe the quasi-particle interference (QPI) effect in this
material, through which unambiguous new information on the SG is obtained. The
analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is
almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level,
while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG
in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This
explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig
Superconducting Fluctuation and Pseudogap in Disordered Short Coherence Length Superconductor
We investigate the role of disorder on the superconducting (SC) fluctuation
in short coherence length d-wave superconductors. The particular intetest is
focused on the disorder-induced microscopic inhomogeneity of SC fluctuation and
its effect on the pseudogap phenomena. We formulate the self-consistent 1-loop
order theory for the SC fluctuation in inhomogeneous systems and analyze the
disordered -- model. The SC correlation function, electronic DOS and
the critical temperature are estimated. The SC fluctuation is localized like a
nanoscale granular structure when the coherence length is short, namely the
transition temperature is high. This is contrasted to the long coherence length
superconductors where the order parameter is almost uniform in the microscopic
scale. In the former case, the SC fluctuation is enhanced by the disorder in
contrast to the Abrikosov-Gorkov theory. These results are consistent with the
STM, NMR and transport measurements in high- cuprates and illuminate
the essential role of the microscopic inhomogeneity. We calculate the spacial
dependence of DOS around the single impurity and discuss the consistency with
the NMR measurements
Visualizing the atomic scale electronic structure of the Ca2CuO2Cl2 Mott insulator
Although the mechanism of superconductivity in the cuprates remains elusive,
it is generally agreed that at the heart of the problem is the physics of doped
Mott insulators. The cuprate parent compound has one unpaired electron per Cu
site, and is predicted by band theory to be a half-filled metal. The strong
onsite Coulomb repulsion, however, prohibits electron hopping between
neighboring sites and leads to a Mott insulator ground state with
antiferromagnetic (AF) ordering. Charge carriers doped into the CuO2 plane
destroy the insulating phase and superconductivity emerges as the carrier
density is sufficiently high. The natural starting point for tackling high Tc
superconductivity is to elucidate the electronic structure of the parent Mott
insulator and the behavior of a single doped charge. Here we use a scanning
tunneling microscope to investigate the atomic scale electronic structure of
the Ca2CuO2Cl2 parent Mott insulator of the cuprates. The full electronic
spectrum across the Mott-Hubbard gap is uncovered for the first time, which
reveals the particle-hole symmetric and spatially uniform Hubbard bands. A
single electron donated by surface defect is found to create a broad in-gap
electronic state that is strongly localized in space with spatial
characteristics intimately related to the AF spin background. The unprecedented
real space electronic structure of the parent cuprate sheds important new light
on the origion of high Tc superconductivity from the doped Mott insulator
perspective.Comment: 26 pages, 4 figures, supplementary information include
The pseudogap: friend or foe of high Tc?
Although nineteen years have passed since the discovery of high temperature
superconductivity, there is still no consensus on its physical origin. This is
in large part because of a lack of understanding of the state of matter out of
which the superconductivity arises. In optimally and underdoped materials, this
state exhibits a pseudogap at temperatures large compared to the
superconducting transition temperature. Although discovered only three years
after the pioneering work of Bednorz and Muller, the physical origin of this
pseudogap behavior and whether it constitutes a distinct phase of matter is
still shrouded in mystery. In the summer of 2004, a band of physicists gathered
for five weeks at the Aspen Center for Physics to discuss the pseudogap. In
this perspective, we would like to summarize some of the results presented
there and discuss its importance in the context of strongly correlated electron
systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in
Physic
How to detect fluctuating order in the high-temperature superconductors
We discuss fluctuating order in a quantum disordered phase proximate to a
quantum critical point, with particular emphasis on fluctuating stripe order.
Optimal strategies for extracting information concerning such local order from
experiments are derived with emphasis on neutron scattering and scanning
tunneling microscopy. These ideas are tested by application to two model
systems - the exactly solvable one dimensional electron gas with an impurity,
and a weakly-interacting 2D electron gas. We extensively review experiments on
the cuprate high-temperature superconductors which can be analyzed using these
strategies. We adduce evidence that stripe correlations are widespread in the
cuprates. Finally, we compare and contrast the advantages of two limiting
perspectives on the high-temperature superconductor: weak coupling, in which
correlation effects are treated as a perturbation on an underlying metallic
(although renormalized) Fermi liquid state, and strong coupling, in which the
magnetism is associated with well defined localized spins, and stripes are
viewed as a form of micro-phase separation. We present quantitative indicators
that the latter view better accounts for the observed stripe phenomena in the
cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and
greatly improved text; one new figure, one new section, two new appendices
and more reference
An N-linked tetrasaccharide from Halobacterium salinarum presents a novel modification, sulfation of iduronic acid at the O-3 position
Halobacterium salinarum, a halophilic archaeon that grows at near-saturating salt concentrations, provided the first example of N-glycosylation outside Eukarya. Yet, almost 50 years later, numerous aspects of such post-translational protein processing in this microorganism remain to be determined, including the architecture of glycoprotein-bound glycans. In the present report, nuclear magnetic resonance spectroscopy was used to define a tetrasaccharide N-linked to both archaellins, building blocks of the archaeal swimming device (the archaellum), and the S-layer glycoprotein that comprises the protein shell surrounding the Hbt. salinarum cell as β-GlcA(2S)-(1 → 4)-α-IdoA(3S)-(1 → 4)-β-GlcA-(1 → 4)-β-Glc-Asn. The structure of this tetrasaccharide fills gaps remaining from previous studies, including confirmation of the first known inclusion of iduronic acid in an archaeal N-linked glycan. At the same time, the sulfation of this iduronic acid at the O-3 position has not, to the best of our knowledge, been previously seen. As such, this may represent yet another unique facet of N-glycosylation in Archaea
Experience in use of charge calculation computer program
Is given an experience in use charge calculation computer program
- …