1,818 research outputs found

    Signatures of Emerging Subsurface Structures in Acoustic Power Maps

    Full text link
    We show that under certain conditions, subsurface structures in the solar interior can alter the average acoustic power observed at the photosphere above them. By using numerical simulations of wave propagation, we show that this effect is large enough for it to be potentially used for detecting emerging active regions before they appear on the surface. In our simulations, simplified subsurface structures are modeled as regions with enhanced or reduced acoustic wave speed. We investigate the dependence of the acoustic power above a subsurface region on the sign, depth, and strength of the wave speed perturbation. Observations from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) prior and during the emergence of NOAA active region 10488 are used to test the use of acoustic power as a potential precursor of magnetic flux emergence.Comment: 7 pages, 5 figures, accepted for publication in Solar Physics on 21 March 201

    A protosolar nebula origin for the ices agglomerated by Comet 67P/Churyumov-Gerasimenko

    Get PDF
    The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the protosolar nebula. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the protosolar nebula. On the basis of existing laboratory and modeling data, we find that the N2_2/CO and Ar/CO ratios measured in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA instrument aboard the European Space Agency's Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N2_2/CO and Ar/CO ratios in 67P/Churyumov-Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov-Gerasimenko is impoverished in Ar and N2_2, the volatile enrichments observed in Jupiter's atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.Comment: The Astrophysical Journal Letters, in pres

    Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere

    Get PDF
    Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised. The lower chromosphere contains neutral atoms, the existence of which greatly increases the efficiency of the damping of waves due to collisional friction momentum transfer. More specifically the Cowling conductivity can be up to 12 orders of magnitude smaller than the Spitzer value, so that the main damping mechanism in this region is due to the collisions between neutrals and positive ions (Khodachenko et al. 2004, A&A, 422, 1073). Using values for the gas density and temperature as functions of height taken from the VAL C model of the quiet Sun (Vernazza et al. 1981, ApJS, 45, 635), an estimate is made for the dependance of the Cowling conductivity on height and strength of magnetic field. Using both analytic and numerical approaches the passage of Alfvén waves over a wide spectrum through this partially ionised region is investigated. Estimates of the efficiency of this region in the damping of Alfvén waves are made and compared for both approaches. We find that Alfvén waves with frequencies above 0.6 Hz are completely damped and frequencies below 0.01 Hz unaffected

    Starting or Changing Therapy - A Prospective Study Exploring Antiretroviral Decision-Making

    Get PDF
    Background:: When to start or change antiretroviral treatment against HIV infection is of major importance. Patients' readiness is considered a major factor influencing such treatment decisions, in particular because no objective, absolute time point when to start antiretroviral therapy exists. We aimed at evaluating patients' readiness to start or change antiretroviral therapy (ART). Patients and Methods:: HIV-infected patients starting or changing ART between July 2002 and February 2003, treating physicians and nurses participated in this prospective, observational multicenter study. We assessed shared decision-making including qualitative aspects, expected treatment decisions and treatment status after 3 months. Results:: 75 patients were included. Of 34 patients for whom starting ART was considered, 27 (79%) indicated that they were willing to start treatment. After 3 months, 21 of 27 (78%) actually started therapy, six did not. Patients with depression were less likely to be ready for ART (p < 0.05). Of 41 patients for whom changing ART was considered, 35 (85%) indicated that they were willing to change treatment. Of the latter 35 patients, 33 (94%) finally changed ART within 3 months. Physicians and nurses were too optimistic in predicting the start or change of ART. The main reason to start or change ART was the sole recommendation of the physician (52% in those starting, 61% in those changing ART). Patients mainly judged the decision as shared and were very satisfied (71%) with the process. Qualitative findings revealed the importance of a dialectic decisionmaking, described with two categories: "dealing with oneself and others”‚ and "understanding and being understood.” Conclusion:: Patients mainly shared the decision made during consultation. Although physicians have an essential role concerning ART, patients, physicians, and nurses all contribute to the decision. Qualitative findings indicate the importance for health-care providers to include patients' expertise and contribution

    Tohoku-Hiroshima-Nagoya planetary spectra library: A method for characterizing planets in the visible to near infrared

    Full text link
    There has not been a comprehensive framework for comparing spectral data from different planets.Such a framework is needed for the study of extrasolar planets and objects within the solar system. We have undertaken observations to compile a library of planet spectra for all planets, some moons, and some dwarf planets in the solar system to study their general spectroscopic and photometric natures. During May and November of 2008, we acquired spectra for the planets using TRISPEC, which is capable of simultaneous three-band spectroscopy in a wide wavelength range of 0.45 - 2.5 microns with low resolving power (lambda-over-Delta-lambda is 140 - 360). Patterns emerge from comparing the spectra. Analyzing their general spectroscopic and photometric natures, we show that it is possible to distinguish between gas planets, soil planets and ice planets. These methods can be applied to extrasolar observations using low resolution spectrography or broad-band filters. The present planet spectral library is the first library to contain observational spectra for all of the solar system planets, based on simultaneous observations in visible and near infrared wavelengths. This library will be a useful reference for analyzing extrasolar planet spectra, and for calibrating planetary data sets.Comment: 11 pages, 6 figures, Accepted on 28/08/2009 to appear in Section 10. Planets and planetary systems of Astronomy and Astrophysic

    Calculation of Spectral Darkening and Visibility Functions for Solar Oscillations

    Get PDF
    Calculations of spectral darkening and visibility functions for the brightness oscillations of the Sun resulting from global solar oscillations are presented. This has been done for a broad range of the visible and infrared continuum spectrum. The procedure for the calculations of these functions includes the numerical computation of depth-dependent derivatives of the opacity caused by p modes in the photosphere. A radiative-transport code was used for this purpose to get the disturbances of the opacities from temperature and density fluctuations. The visibility and darkening functions are obtained for adiabatic oscillations under the assumption that the temperature disturbances are proportional to the undisturbed temperature of the photosphere. The latter assumption is the only way to explore any opacity effects since the eigenfunctions of p-mode oscillations have not been obtained so far. This investigation reveals that opacity effects have to be taken into account because they dominate the violet and infrared part of the spectrum. Because of this dominance, the visibility functions are negative for those parts of the spectrum. Furthermore, the darkening functions show a wavelength-dependent change of sign for some wavelengths owing to these opacity effects. However, the visibility and darkening functions under the assumptions used contradict the observations of global p-mode oscillations, but it is beyond doubt that the opacity effects influence the brightness fluctuations of the Sun resulting from global oscillations

    Multiple and Fast: The Accretion of Ordinary Chondrite Parent Bodies

    Get PDF
    Although petrologic, chemical and isotopic studies of ordinary chondrites and meteorites in general have largely helped establish a chronology of the earliest events of planetesimal formation and their evolution, there are several questions that cannot be resolved via laboratory measurements and/or experiments only. Here we propose rationale for several new constraints on the formation and evolution of ordinary chondrite parent bodies (and by extension most planetesimals) from newly available spectral measurements and mineralogical analysis of main belt S-type asteroids (83 objects) and unequilibrated ordinary chondrite meteorites (53 samples). Based on the latter, we suggest spectral data may be used to distinguish whether an ordinary chondrite was formed near the surface or in the interior of its parent body. If these constraints are correct, the suggested implications include that: i) large groups of compositionally similar asteroids are a natural outcome of planetesimal formation and, consequently, meteorites within a given class can originate from multiple parent bodies; ii) the surfaces of large (up to ~200km) S-type main-belt asteroids expose mostly the interiors of the primordial bodies, a likely consequence of impacts by small asteroids (D<10km) in the early solar system (Ciesla et al. 2013); iii) the duration of accretion of the H chondrite parent bodies was likely short (instantaneous or in less then ~10^5 yr but certainly not as long as 1 Myr); iv) LL-like bodies formed closer to the Sun than H-like bodies, a possible consequence of radial mixing and size sorting of chondrules in the protoplanetary disk prior to accretion.Comment: Accepted for publication in Ap

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT

    THERMAP: a mid-infrared spectro-imager for space missions to small bodies in the inner solar system

    Get PDF
    We present THERMAP, a mid-infrared (8-16 μm) spectro-imager for space missions to small bodies in the inner solar system, developed in the framework of the MarcoPolo-R asteroid sample return mission. THERMAP is very well suited to characterize the surface thermal environment of a NEO and to map its surface composition. The instrument has two channels, one for imaging and one for spectroscopy: it is both a thermal camera with full 2D imaging capabilities and a slit spectrometer. THERMAP takes advantage of the recent technological developments of uncooled microbolometers detectors, sensitive in the mid-infrared spectral range. THERMAP can acquire thermal images (8-18 μm) of the surface and perform absolute temperature measurements with a precision better than 3.5 K above 200 K. THERMAP can acquire mid-infrared spectra (8-16 μm) of the surface with a spectral resolution Δλ of 0.3 μm. For surface temperatures above 350 K, spectra have a signal-to-noise ratio >60 in the spectral range 9-13 μm where most emission features occur

    (16) Psyche: A mesosiderite-like asteroid?

    Full text link
    Asteroid (16) Psyche is the target of the NASA Psyche mission. It is considered one of the few main-belt bodies that could be an exposed proto-planetary metallic core and that would thus be related to iron meteorites. Such an association is however challenged by both its near- and mid-infrared spectral properties and the reported estimates of its density. Here, we aim to refine the density of (16) Psyche to set further constraints on its bulk composition and determine its potential meteoritic analog. We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large program (ID 199.C-0074). We used the high angular resolution of these observations to refine Psyche's three-dimensional (3D) shape model and subsequently its density when combined with the most recent mass estimates. In addition, we searched for potential companions around the asteroid. We derived a bulk density of 3.99\,±\pm\,0.26\,g\cdotcm3^{-3} for Psyche. While such density is incompatible at the 3-sigma level with any iron meteorites (\sim7.8\,g\cdotcm3^{-3}), it appears fully consistent with that of stony-iron meteorites such as mesosiderites (density \sim4.25\,\cdotcm3^{-3}). In addition, we found no satellite in our images and set an upper limit on the diameter of any non-detected satellite of 1460\,±\pm\,200}\,m at 150\,km from Psyche (0.2\%\,×\times\,RHill_{Hill}, the Hill radius) and 800\,±\pm\,200\,m at 2,000\,km (3\%\,×\times\,RHillR_{Hill}). Considering that the visible and near-infrared spectral properties of mesosiderites are similar to those of Psyche, there is merit to a long-published initial hypothesis that Psyche could be a plausible candidate parent body for mesosiderites.Comment: 16 page
    corecore