5,571 research outputs found
Collider Signature of T-quarks
Little Higgs models with T Parity contain new vector-like fermions, the T-odd
quarks or "T-quarks", which can be produced at hadron colliders with a
QCD-strength cross section. Events with two acoplanar jets and large missing
transverse energy provide a simple signature of T-quark production. We show
that searches for this signature with the Tevatron Run II data can probe a
significant part of the Little Higgs model parameter space not accessible to
previous experiments, exploring T-quark masses up to about 400 GeV. This reach
covers parts of the parameter space where the lightest T-odd particle can
account for the observed dark matter relic abundance. We also comment on the
prospects for this search at the Large Hadron Collider (LHC).Comment: 5 pages, 3 figure
Hyperspectral imaging to characterize table grapes
Table grape quality is of importance for consumers and thus for producers. Its objective quality is usually determined by destructive methods mainly based on sugar content. This study proposed to evaluate the possibility of hyperspectral imaging to characterize table grapes quality through its sugar (TSS), total flavonoid (TF), and total anthocyanin (TA) contents. Different data pretreatments (WD, SNV, and 1st and 2nd derivative) and different methods were tested to get the best prediction models: PLS with full spectra and then Multiple Linear Regression (MLR) were realized after selecting the optimal wavelengths thanks to the regression coefficients (coefficients) and the Variable Importance in Projection (VIP) scores. All models were good at showing that hyperspectral imaging is a relevant method to predict sugar, total flavonoid, and total anthocyanin contents. The best predictions were obtained from optimal wavelength selection based on coefficients for TSS and from VIPs optimal wavelength windows using SNV pre-treatment for total flavonoid and total anthocyanin content. Thus, good prediction models were proposed in order to characterize grapes while reducing the data sets and limit the data storage to enable an industrial use
Mesoscopic Analysis of Structure and Strength of Dislocation Junctions in FCC Metals
We develop a finite element based dislocation dynamics model to simulate the
structure and strength of dislocation junctions in FCC crystals. The model is
based on anisotropic elasticity theory supplemented by the explicit inclusion
of the separation of perfect dislocations into partial dislocations bounding a
stacking fault. We demonstrate that the model reproduces in precise detail the
structure of the Lomer-Cottrell lock already obtained from atomistic
simulations. In light of this success, we also examine the strength of
junctions culminating in a stress-strength diagram which is the locus of points
in stress space corresponding to dissolution of the junction.Comment: 9 Pages + 4 Figure
Geometric Generalisations of SHAKE and RATTLE
A geometric analysis of the Shake and Rattle methods for constrained
Hamiltonian problems is carried out. The study reveals the underlying
differential geometric foundation of the two methods, and the exact relation
between them. In addition, the geometric insight naturally generalises Shake
and Rattle to allow for a strictly larger class of constrained Hamiltonian
systems than in the classical setting.
In order for Shake and Rattle to be well defined, two basic assumptions are
needed. First, a nondegeneracy assumption, which is a condition on the
Hamiltonian, i.e., on the dynamics of the system. Second, a coisotropy
assumption, which is a condition on the geometry of the constrained phase
space. Non-trivial examples of systems fulfilling, and failing to fulfill,
these assumptions are given
Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling
This paper considers the interaction between two droplets placed on a
substrate in immediate vicinity. We show here that when the two droplets are of
different fluids and especially when one of the droplet is highly volatile, a
wealth of fascinating phenomena can be observed. In particular, the interaction
may result in the actuation of the droplet system, i.e. its displacement over a
finite length. In order to control this displacement, we consider droplets
confined on a hydrophilic stripe created by plasma-treating a PDMS substrate.
This controlled actuation opens up unexplored opportunities in the field of
microfluidics. In order to explain the observed actuation phenomenon, we
propose a simple phenomenological model based on Newton's second law and a
simple balance between the driving force arising from surface energy gradients
and the viscous resistive force. This simple model is able to reproduce
qualitatively and quantitatively the observed droplet dynamics
The effects of LHC civil engineering on the SPS and LEP machines
The LHC will utilise much of the existing LEP infrastructure but will require many new surface buildings and several smaller underground structures, two new transfer tunnels from the SPS to the LHC an d two huge cavern complexes to house the ATLAS and CMS experiments. Excavation for the underground structures will start while LEP and SPS are running, causig the existing tunnels in close proximity t o move. The predicted movements are of sufficient amplitude to prevent machine oepration if no precautions are taken
Precise Measurement of the b-Quark Fragmentation Function in Z0 Boson Decays
We have developed a new technique for inclusive reconstruction of the energy of B hadrons. The excellent efficiency and resolution of this technique allow us to make the most precise determination of the b-quark fragmentation function, using e[superscript +]e[superscript -]→Z[superscript 0] decays recorded in the SLAC Large Detector experiment. We compared our measurement with the predictions of a number of fragmentation models. We excluded several of these models and measured the average scaled energy of weakly decaying B hadrons to be 〈x[subscript B]〉 = 0.714±0.005(stat)±0.007(syst)±0.002 (model dependence).Istituto Nazionale di Fisica Nucleare of ItalyJapan-U.S. Cooperative Research Project on High Energy PhysicsDepartment of EnergyU.K. Particle Physics and Astronomy Research CouncilKorea Science and Engineering Foundatio
2,4-Bis(4-bromophenyl)-3-azabicyclo[3.3.1]nonan-9-one
The title compound, C20H19Br2NO, shows a chair–chair conformation for the azabicycle with an equatorial disposition of the 4-bromophenyl groups [dihedral angle between the aromatic rings = 16.48 (3)°]. In the crystal, a short Br⋯Br contact [3.520 (4) Å] occurs and the structure is further stabilized by N—H⋯O hydrogen bonds and C—H⋯O interactions
- …