128 research outputs found

    Reconstructing the primordial power spectrum from the CMB

    Full text link
    We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism, applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.Comment: 43 pages Revtex, 23 figure

    Heavy quark symmetry constraints on semileptonic form factors and decay widths of doubly heavy baryons

    Get PDF
    We show how heavy quark symmetry constraints on doubly heavy baryon semileptonic decay widths can be used to test the validity of different quark model calculations. The large discrepancies in the results observed between different quark model approaches can be understood in terms of a severe violation of heavy quark spin symmetry constraints by some of those models.Comment: 10 LaTex pages, 3 figures, 6 tables. Corrected and enlarged versio

    Discrete Moyal-type representations for a spin

    Get PDF
    In Moyal’s formulation of quantum mechanics, a quantum spin s is described in terms of continuous symbols, i.e., by smooth functions on a two-dimensional sphere. Such prescriptions to associate operators with Wigner functions, P or Q symbols, are conveniently expressed in terms of operator kernels satisfying the Stratonovich-Weyl postulates. In analogy to this approach, a discrete Moyal formalism is defined on the basis of a modified set of postulates. It is shown that appropriately modified postulates single out a well-defined set of kernels that give rise to discrete symbols. Now operators are represented by functions taking values on (2s+1)2 points of the sphere. The discrete symbols contain no redundant information, contrary to the continuous ones. The properties of the resulting discrete Moyal formalism for a quantum spin are worked out in detail and compared to the continuous formalism

    Test of the heavy quark-light diquark approximation for baryons with a heavy quark

    Get PDF
    We check a commonly used approximation in which a baryon with a heavy quark is described as a heavy quark-light diquark system. The heavy quark influences the diquark internal motion reducing the average distance between the two light quarks. Besides, we show how the average distance between the heavy quark and any of the light quarks, and that between the heavy quark and the center of mass of the light diquark, are smaller than the distance between the two light quarks, which seems to contradict the heavy quark-light diquark picture. This latter result is in agreement with expectations from QCD sum rules and lattice QCD calculations. Our results also show that the diquark approximations produces larger masses than the ones obtained in a full calculation.Comment: 9 latex pages, 5 figures, 6 table

    Galilean symmetry in the effective theory of inflation: new shapes of non-Gaussianity

    Full text link
    We study the consequences of imposing an approximate Galilean symmetry on the Effective Theory of Inflation, the theory of small perturbations around the inflationary background. This approach allows us to study the effect of operators with two derivatives on each field, which can be the leading interactions due to non-renormalization properties of the Galilean Lagrangian. In this case cubic non-Gaussianities are given by three independent operators, containing up to six derivatives, two with a shape close to equilateral and one peaking on flattened isosceles triangles. The four-point function is larger than in models with small speed of sound and potentially observable with the Planck satellite.Comment: 23 pages, 6 figures. v2: minor changes to match JCAP published versio

    Relativistic effects and primordial non-Gaussianity in the galaxy bias

    Get PDF
    When dealing with observables, one needs to generalize the bias relation between the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. We provide such relation at second-order in perturbation theory adopting the local Eulerian bias model and starting from the observationally motivated uniform-redshift gauge. Our computation includes the presence of primordial non-Gaussianity. We show that large scale-dependent relativistic effects in the Eulerian bias arise independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation with the angle of observation when sources with different biases are correlated.Comment: 12 pages, LaTeX file; version accepted for publication in JCA

    Diseño y validación de la Escala de Percepción hacia la Investigación Educativa en profesores universitarios y no universitarios

    Get PDF
    This article aims to design and validate a scale of perception towards educational research. The instrument, which was applied to a sample of 324 university and non-university teachers, is made up of three dimensions: Value towards educational research, Involvement with educational research, and Competence in educational research. The results revealed excellent goodness-of-fit and reliability values, making its use relevant for the academic and educational field. In addition, statistically significant differences were found in the three dimensions of the instrument in favour of university teachers. These results provide important theoretical and practical implications.El presente artículo tiene como objetivo diseñar y validar una escala de percepción hacia la investigación educativa. El instrumento, que se aplicó con una muestra de 324 profesores universitarios y no universitarios, está formado por tres dimensiones: Valor hacia la investigación educativa, Implicación con la investigación educativa y Competencia en investigación educativa. Los resultados arrojaron unos valores de bondad de ajuste y fiabilidad excelentes, haciendo que su uso sea pertinente para el ámbito académico y educativo. Asimismo, se hallaron diferencias estadísticamente significativas en las tres dimensiones del instrumento a favor del profesorado universitario. Estos resultados aportan implicaciones teóricas y prácticas relevantes

    Scale-Dependent Non-Gaussianity as a Generalization of the Local Model

    Full text link
    We generalize the local model of primordial non-Gaussianity by promoting the parameter fNL to a general scale-dependent function fNL(k). We calculate the resulting bispectrum and the effect on the bias of dark matter halos, and thus the extent to which fNL(k) can be measured from the large-scale structure observations. By calculating the principal components of fNL(k), we identify scales where this form of non-Gaussianity is best constrained and estimate the overlap with previously studied local and equilateral non-Gaussian models.Comment: Accepted to JCAP. 22 pages, 4 figure

    Signatures of very high energy physics in the squeezed limit of the bispectrum (violation of Maldacena's condition)

    Full text link
    We investigate the signatures in the squeezed limit of the primordial scalar bispectrum due to modifications of the standard theory at high energy. In particular, we consider the cases of modified dispersion relations and/or modified initial quantum state (both in the Boundary Effective Field Theory and in the New Physics Hyper-Surface formulations). Using the in-in formalism we study in details the squeezed limit of the contributions to the bispectrum from all possible cubic couplings in the effective theory of single-field inflation. We find general features such as enhancements and/or non-local shape of the non-Gaussianities, which are relevant, for example, for measurements of the halo bias and which distinguish these scenarios from the standard one (with Bunch-Davies vacuum as initial state and standard kinetic terms). We find that the signatures change according to the magnitude of the scale of new physics, and therefore several pieces of information regarding high energy physics could be obtained in case of detection of these signals, especially bounds on the scales of new physics.Comment: 37 pages plus bibliography, version matching the one accepted for publication by JCAP. Increased pedagogical comments, improved presentation and text, added reference

    Signatures of Primordial non-Gaussianities in the Matter Power-Spectrum and Bispectrum: the Time-RG Approach

    Get PDF
    We apply the time-renormalization group approach to study the effect of primordial non-Gaussianities in the non-linear evolution of cosmological dark matter density perturbations. This method improves the standard perturbation approach by solving renormalization group-like equations governing the dynamics of gravitational instability. The primordial bispectra constructed from the dark matter density contrast and the velocity fields represent initial conditions for the renormalization group flow. We consider local, equilateral and folded shapes for the initial non-Gaussianity and analyze as well the case in which the non-linear parameter f_{NL} parametrizing the strength of the non-Gaussianity depends on the momenta in Fourier space through a power-law relation, the so-called running non-Gaussianity. For the local model of non-Gaussianity we compare our findings for the power-spectrum with those of recent N-body simulations and find that they accurately fit the N-body data up to wave-numbers k \sim 0.25 h/Mpc at z=0. We also present predictions for the (reduced) matter bispectra for the various shapes of non-Gaussianity.Comment: 27 pages, 12 figures. Results and discussion for a particular case added. One figure and one reference added. Matches with the version accepted for publication in the JCAP
    corecore