73 research outputs found

    Effects of temperature and salinity on the growth of Alexandrium (Dinophyceae) isolates from the Salish Sea

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Phycology 52 (2016): 230–238, doi:10.1111/jpy.12386.Toxin-producing blooms of dinoflagellates in the genus Alexandrium have plagued the inhabitants of the Salish Sea for centuries. Yet the environmental conditions that promote accelerated growth of this organism, a producer of paralytic shellfish toxins, is lacking. This study quantitatively determined the growth response of two Alexandrium isolates to a range of temperatures and salinities, factors that will strongly respond to future climate change scenarios. An empirical equation, derived from observed growth rates describing the temperature and salinity dependence of growth, was used to hindcast bloom risk. Hindcasting was achieved by comparing predicted growth rates, calculated from in situ temperature and salinity data from Quartermaster Harbor, with corresponding Alexandrium cell counts and shellfish toxin data. The greatest bloom risk, defined at μ >0.25 d−1, generally occurred from April through November annually; however, growth rates rarely fell below 0.10 d−1. Except for a few occasions, Alexandrium cells were only observed during the periods of highest bloom risk and paralytic shellfish toxins above the regulatory limit always fell within the periods of predicted bloom occurrence. While acknowledging that Alexandrium growth rates are affected by other abiotic and biotic factors, such as grazing pressure and nutrient availability, the use of this empirical growth function to predict higher risk time frames for blooms and toxic shellfish within the Salish Sea provides the groundwork for a more comprehensive biological model of Alexandrium bloom dynamics in the region and will enhance our ability to forecast blooms in the Salish Sea under future climate change scenarios.NOAA Ecology and Oceanography of Harmful Algal Bloom (ECOHAB) Program; Woods Hole Center for Oceans and Human Health; National Science Foundation Grant Number: OCE-1314642; National Institute of Environmental Health Sciences Grant Number: 1-P01-ES021923-0

    Characterization of Intracellular and Extracellular Saxitoxin Levels in Both Field and Cultured Alexandrium spp. Samples from Sequim Bay, Washington

    Get PDF
    Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004–2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by pre-column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 ± 9.7 % of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region

    Assessing a model of Pacific Northwest harmful algal bloom transport as a decision-support tool

    Get PDF
    In the Pacific Northwest, blooms of the diatom Pseudo-nitzschia (PN) sometimes produce domoic acid, a neurotoxin that causes amnesic shellfish poisoning, leading to a Harmful Algal Bloom (HAB) event. The Pacific Northwest (PNW) HAB Bulletin project, a partnership between academic, government, and tribal stakeholders, uses a combination of beach and offshore monitoring data and ocean forecast modeling to better understand the formation, evolution, and transport of HABs in this region. This project produces periodic Bulletins to inform local stakeholders of current and forecasted conditions. The goal of this study was to help improve how the forecast model is used in the Bulletin's preparation through a retrospective particle-tracking experiment. Using past observations of beach PN cell counts, events were identified that likely originated in the Juan de Fuca eddy, a known PN hotspot, and then particle tracks were used in the model to simulate these events. A variety of “beaching definitions” were tested, based on both water depth and distance offshore, to define when a particle in the model was close enough to the coast that it was likely to correspond to cells appearing in the intertidal zone and in shellfish diets, as well as a variety of observed PN cell thresholds to determine what cell count should be used to describe an event that would warrant further action. The skill of these criteria was assessed by determining the fraction of true positives, true negatives, false positives, and false negatives within the model in comparison with observations, as well as a variety of derived model performance metrics. This analysis suggested that for our stakeholders’ purposes, the most useful beaching definition is the 30 m isobath and the most useful PN cell threshold for coincident field-based sample PN density estimates is 10,000 PN cells/L. Lastly, the performance of a medium-resolution (1.5 km horizontal resolution) version of the model was compared with that of a high-resolution (0.5 km horizontal resolution) version, the latter currently used in forecasting for the PNW HAB Bulletin project. This analysis includes a direct comparison of the two model resolutions for one overlapping year (2017). These results suggested that a narrower, more realistic beaching definition is most useful in a high-resolution model, while a wider beaching definition is more appropriate in a lower resolution model like the medium-resolution version used in this analysis. Overall, this analysis demonstrated the importance of incorporating stakeholder needs into the statistical approach in order to generate the most effective decision-support information from oceanographic modeling

    Marine harmful algal blooms (HABs) in the united states: history, current status and future trends

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M., Landsberg, J. H., Lefebvre, K. A., Provoost, P., Richlen, M. L., Smith, J. L., Solow, A. R., & Trainer, V. L. Marine harmful algal blooms (HABs) in the united states: history, current status and future trends. Harmful Algae, 102, (2021): 101975, https://doi.org/10.1016/j.hal.2021.101975.Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida – Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921–2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.Support for DMA, MLR, and DMK was provided through the Woods Hole Center for Oceans and Human Health (National Science Foundation grant OCE-1840381 and National Institutes of Health grants NIEHS‐1P01-ES028938–01) and the U.S. National Office for Harmful Algal Blooms with funding from NOAA's National Centers for Coastal Ocean Science (NCCOS) through the Cooperative Institute for the North Atlantic Region (CINAR) (NA14OAR4320158, NA19OAR4320074). Funding for KAL and DMA was provided by the National Oceanic and Atmospheric Administration National Centers for Coastal Ocean Science Competitive Research Program under award NA20NOS4780195 to the Woods Hole Oceanographic Institution and NOAA's Northwest Fisheries Science Center. We also acknowledge support for A.H. from the National Oceanic and Atmospheric Administration [NOAA] Office of Ocean and Coastal Resource Management Award NA19NOS4780183, C.J.G from NOAA-MERHAB (NA19NOS4780186) and (NA16NOS4780189) for VLT Support was also received for JLS, CJG, and VLT from NOAA-NCCOS-ECOHAB under awards NA17NOS4780184 and NA19NOS4780182. This is ECOHAB publication number ECO972

    Toxic pelagic harmful algal blooms impacting shellfish safety

    Get PDF
    71 pages, 13 figures, 2 tablesFollowing the IOC–UNESCO definition of harmful algal blooms (HABs) and the categorization of the impacts of harmful microalgae in the world’s oceans proposed by Lassus et al. (2016), this chapter will focus on pelagic species that affect shellfish safety by producing toxins and consequently causing various symptoms in humans by consuming poisoned food. Pelagic HABs that have a dormant benthic phase in their life cycle are also included (Table 4.1). [...]With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S

    Centers for Oceans and Human Health : a unified approach to the challenge of harmful algal blooms

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License The definitive version was published in Environmental Health 7 (2008): S2, doi:10.1186/1476-069X-7-S2-S2.Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics. In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine. Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health.This work was funded through grants from the NSF/NIEHS Centers for Oceans and Human Health, NIEHS P50 ES012742 and NSF OCE-043072 (DLE and DMA), NSF OCE04-32479 and NIEHS P50 ES012740 (PB and RRB), NSF OCE-0432368 and NIEHS P50 ES12736 (LEB), NIEHS P50 ES012762 and NSF OCE-0434087 (RCS, KAL, MSP, MLW, and KAH). Additional support was provided by the ECOHAB Grant program NSF Grant OCE-9808173 and NOAA Grant NA96OP0099 (DMA), NOAA OHHI NA04OAR4600206 (RRB) and Washington State Sea Grant NA16RG1044 (RCS). KAL and VLT were supported in part by the West Coast Center for Oceans and Human Health (WCCOHH) as part of the NOAA Oceans and Human Health Initiative

    High affinity binding of pyrethroids to the � subunit of brain sodium channels

    Get PDF
    SUMMARY Na ϩ channels are the primary molecular targets of the pyrethroid insecticides. Na ϩ channels consisting of only a type IIA ␣ subunit expressed in Chinese hamster ovary cells responded to pyrethroid treatment in a normal manner: a sustained Na ϩ current was induced progressively after each depolarizing pulse in a train of stimuli, and this Na ϩ current decayed slowly on repolarization. These modified Na ϩ channels could be reactivated at much more negative membrane potentials (V 0.5 ϭ Ϫ139 mV) than unmodified Na ϩ channels (V 0.5 ϭ Ϫ28 mV). These results indicate that pyrethroids can modify the functional properties of the Na ϩ channel ␣ subunit expressed alone by blocking their inactivation, shifting their voltage dependence of activation, and slowing their deactivation. To demonstrate directly the specific interaction of pyrethroids with the ␣ subunit of voltage-gated Na ϩ channels, a radioactive photosensitive derivative, [ 3 H]RU58487, was used in binding and photolabeling studies. In the presence of a low concentration of the nonionic detergent Triton X-100, specific pyrethroid binding to Na ϩ channels in rat brain membrane preparations could be measured and reached 75% of total binding under optimal conditions. Binding approached equilibrium within 1 hr at 4°, dissociated with a half-time of ϳ10 min, and had K D values of ϳ58 -300 nM for three representative pyrethroids. Specific pyrethroid binding was enhanced by ϳ40% in the presence of 100 nM ␣-scorpion toxin, but no allosteric enhancement was observed in the presence of toxins acting at other Na ϩ channel receptor sites. Extensive membrane washing increased specific binding to 89%. Photolabeling with [ 3 H]RU58487 under these optimal binding conditions revealed a radiolabeled band with an apparent molecular mass of 240 kDa corresponding to the Na ϩ channel ␣ subunit. Anti-peptide antibodies recognizing sequences within the ␣ subunit were able to specifically immunoprecipitate the covalently modified channel. Together, these results demonstrate that the pyrethroids can modify the properties of cells expressing only the ␣ subunit of Na ϩ channels and can bind specifically to a receptor site on the ␣ subunit

    Rapid Enzyme-linked Immunosorbent Assay for Detection of the Algal Toxin Domoic Acid

    Get PDF
    Domoic acid (DA) is a potent toxin produced by bloom-forming phytoplankton in the genus Pseudo-nitzschia, which is responsible for causing amnesic shellfish poisoning (ASP) in humans. ASP symptoms include vomiting, diarrhea, and in more severe cases confusion, loss of memory, disorientation, and even coma or death. This paper describes the development and validation of a rapid, sensitive, enzyme linked immunosorbent assay test kit for detecting DA using a monoclonal antibody. The assay gives equivalent results to those obtained using standard high performance liquid chromatography, fluorenylmethoxycarbonyl high performance liquid chromatography, or liquid chromatography—mass spectrometry methods. It has a linear range from 0.1–3 ppb and was used successfully to measure DA in razor clams, mussels, scallops, and phytoplankton. The assay requires approximately 1.5 h to complete and has a standard 96-well format where each strip of eight wells is removable and can be stored at 4°C until needed. The first two wells of each strip serve as an internal control eliminating the need to run a standard curve. This allows as few as 3 or as many as 36 duplicate samples to be run at a time enabling real-time sample processing and limiting degradation of DA, which can occur during storage. There was minimal cross-reactivity in this assay with glutamine, glutamic acid, kainic acid, epi- or iso-DA. This accurate, rapid, cost-effective, assay offers environmental managers and public health officials an effective tool for monitoring DA concentrations in environment samples

    Harmful algal blooms and eutrophication : examining linkages from selected coastal regions of the United States

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH)
    corecore