66 research outputs found

    Le mariage Ă  l’épreuve du travail en usine : ouvriĂšres de l’industrie de la chaussure en Inde du sud

    Get PDF
    Tholpuram est une ville moyenne d’Inde du Sud, dont la population est partagĂ©e presque Ă©galement entre hindous et musulmans. Son importante activitĂ© du cuir s’est dĂ©veloppĂ©e dans des tanneries puis des usines de chaussures. Depuis les annĂ©es quatre-vingt, ces derniĂšres offrent de nouvelles opportunitĂ©s d’emplois aux femmes. Il s’agit ici d’étudier quelles transformations sociales et familiales le salariat des femmes introduit dans cette sociĂ©tĂ© locale, et dans quelle mesure le nouveau statut social d’« ouvriĂšre d’usine » interfĂšre dans l’institution du mariage.Tholpuram is an industrialized medium-size town in South India, which population is shared almost equaly between Hindus and Muslims. Its important activity of leather work has been developped in tanneries and shoe factories. The latter have been given new opportunities of work to women since the 1980s. They are here observed as new places of sociability for women. The question which then arises is how women’s labour which brings new social organisation and emancipation, interacts with marriage, as a traditional institution which reproduces family and caste frameworks

    Effect of diets containing a purified soybean trypsin inhibitor on growth performance, digestive proteases and intestinal histology in juvenile sea bream (Sparus aurata L.)

    Get PDF
    Juvenile sea bream were fed on diets containing 0.0, 2.0 or 4.0 g/kg of a soybean trypsin inhibitor (SBTI) for 30 days. The growth performance, total protease activity and intestinal histology were studied after 0,15 and 30 days of dietary treatment. No signiÂącant diÂĄerences were found in the weight gain, speciÂąc growth rate (SGR) and feed conversion rate in fish fed on inhibitor-supplemented diets when compared with those fed on an inhibitor-free diet. Only the SGR at day 15 decreased signiÂącantly with protease inhibitor inclusion, although this effect was not observed at day 30. In relation to proteolytic activity at day 15, the total protease activity in the distal intestine decreased in Âąsh fed on inhibitor-supplemented diets. Zymograms of these extracts showed that the SBTI reduced the intensity of some proteolytic fractions in the distal intestine. A noticeable reduction in the protease activity of the intestinal content in fish fed onthe highest level of soybean inhibitor (4.0 g/kg) was also observed. However, at day 30, the inhibition eÂĄect on these active bands was not detected, and the total protease activity was similar to that in Âąsh fed on an inhibitor-free diet. Histological examination revealed no perceptible differences in the intestinal structure between any of the diet groups. In addition, all Âąshweremaintained under experimentation for 10 more days and fed on an inhibitor-free diet to determine whether the possible effects caused by the protease inhibitor could be reverted.The administration of SBTI-supplemented diets did not affect sea bream growth performance or intestine histology after 30 days, and only a decrease in the total alkaline protease activity was found at day 15

    Long -term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level

    Full text link
    [EN] Background: In order to ensure sustainability of aquaculture production of carnivourous fish species such as the gilthead seabream (Sparus aurata, L.), the impact of the inclusion of alternative protein sources to fishmeal, including plants, has been assessed. With the aim of evaluating long-term effects of vegetable diets on growth and intestinal status of the on-growing gilthead seabream (initial weight = 129 g), three experimental diets were tested: a strict plant protein-based diet (VM), a fishmeal based diet (FM) and a plant protein-based diet with 15% of marine ingredients (squid and krill meal) alternative to fishmeal (VM+). Intestines were sampled after 154 days. Besides studying growth parameters and survival, the gene expression related to inflammatory response, immune system, epithelia integrity and digestive process was analysed in the foregut and hindgut sections, as well as different histological parameters in the foregut. Results: There were no differences in growth performance (p = 0.2703) and feed utilization (p = 0.1536), although a greater fish mortality was recorded in the VM group (p = 0.0141). In addition, this group reported a lower expression in genes related to pro-inflammatory response, as Interleukine-1 beta (il1 beta, p = 0.0415), Interleukine-6 (il6, p = 0.0347) and cyclooxigenase-2 (cox2, p = 0.0014), immune-related genes as immunoglobulin M (igm, p = 0.0002) or bacterial defence genes as alkaline phosphatase (alp, p = 0.0069). In contrast, the VM+ group yielded similar survival rate to FM (p = 0.0141) and the gene expression patterns indicated a greater induction of the inflammatory and immune markers (il1 beta, cox2 and igm). However, major histological changes in gut were not detected. Conclusions: Using plants as the unique source of protein on a long term basis, replacing fishmeal in aqua feeds for gilthead seabream, may have been the reason of a decrease in the level of different pro-inflammatory mediators (il1 beta, il6 and cox2) and immune-related molecules (igm and alp), which reflects a possible lack of local immune response at the intestinal mucosa, explaining the higher mortality observed. Krill and squid meal inclusion in vegetable diets, even at low concentrations, provided an improvement in nutrition and survival parameters compared to strictly plant protein based diets as VM, maybe explained by the maintenance of an effective immune response throughout the assay.The research has been partially funded by Vicerrectorat d'Investigacio, Innovacio i Transferencia of the Universitat Politecnica de Valencia, which belongs to the project Aquaculture feed without fishmeal (SP20120603). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Estruch-Cucarella, G.; Collado, MC.; Monge-Ortiz, R.; Tomas-Vidal, A.; Jover CerdĂĄ, M.; Peñaranda, D.; Perez Martinez, G.... (2018). Long -term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research. 14. https://doi.org/10.1186/s12917-018-1626-6S14Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res. 2010;41:770–6.MartĂ­nez-Llorens S, Moñino AV, Vidal AT, Salvador VJM, Pla Torres M, Jover CerdĂĄ M, et al. Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquac Res. 2007;38(1):82–90.Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture. 2008;285:146–58.Bonaldo A, Roem AJ, Fagioli P, Pecchini A, Cipollini I, Gatta PP. Influence of dietary levels of soybean meal on the performance and gut histology of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Aquac Res. 2008;39(9):970–8.Kissil G, Lupatsch I. Successful replacement of fishmeal by plant proteins in diets for the gilthead seabream, Sparus Aurata L. Isr J Aquac – Bamidgeh. 2004;56(3):188–99.Monge-OrtĂ­z R, MartĂ­nez-Llorens S, MĂĄrquez L, Moyano FJ, Jover-CerdĂĄ M, TomĂĄs-Vidal A. Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Arch Anim Nutr. 2016;70(2):155–72.Santigosa E, SĂĄnchez J, MĂ©dale F, Kaushik S, PĂ©rez-SĂĄnchez J, Gallardo MA. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture. 2008;282:68–74.Santigosa E, GarcĂ­a-MeilĂĄn I, Valentin JM, PĂ©rez-SĂĄnchez J, MĂ©dale F, Kaushik S, et al. Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture. 2011;317:146–54.SitjĂĄ-Bobadilla A, Peña-Llopis S, GĂłmez-Requeni P, MĂ©dale F, Kaushik S, PĂ©rez-SĂĄnchez J. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture. 2005;249:387–400.MartĂ­nez-Llorens S, Baeza-Ariño R, Nogales-MĂ©rida S, Jover-CerdĂĄ M, TomĂĄs-Vidal A. Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: amino acid retention, digestibility, gut and liver histology. Aquaculture. 2012;338-341:124–33.Baeza-Ariño R, MartĂ­nez-Llorens S, Nogales-MĂ©rida S, Jover-Cerda M, TomĂĄs-Vidal A. Study of liver and gut alterations in sea bream, Sparus aurata L., fed a mixture of vegetable protein concentrates. Aquac Res. 2014;47(2):460–71.Estruch G, Collado MC, Peñaranda DS, TomĂĄs Vidal A, Jover CerdĂĄ M, PĂ©rez MartĂ­nez G, et al. Impact of fishmeal replacement in diets for gilthead sea bream (Sparus aurata) on the gastrointestinal microbiota determined by pyrosequencing the 16S rRNA gene. PLoS One. 2015;10(8):e0136389. https://doi.org/10.1371/journal.pone.0136389 .Fekete SG, Kellems RO. Interrelationship of feeding with immunity and parasitic infection: a review. Vet Med. 2007;52(4):131–43.Kiron V. Fish immune system and its nutritional modulation for preventive health care. Anim Feed Sci Technol. 2012;173(1–2):111–33.Minghetti M, Drieschner C, Bramaz N, Schug H, Schirmer K. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biol Toxicol. 2017;33:539–55.Cerezuela R, Meseguer J, Esteban MÁ. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2013;34(3):843–8.Couto A, Kortner TM, Penn M, Bakke AM, Krogdahl O-TA, et al. Effects of dietary soy saponins and phytosterols on gilthead sea bream (Sparus aurata) during the on-growing period. Anim Feed Sci Technol. 2014;198:203–14.Estensoro I, Calduch-Giner JA, Kaushik S, PĂ©rez-SĂĄnchez J, SitjĂĄ-Bobadilla A. Modulation of the IgM gene expression and IgM immunoreactive cell distribution by the nutritional background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei (Myxozoa). Fish Shellfish Immunol. 2012;33(2):401–10.PĂ©rez-SĂĄnchez J, Estensoro I, Redondo MJ, Calduch-Giner JA, Kaushik S, SitjĂ -Bobadilla A. Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis. PLoS One. 2013;8(6):e65457.Reyes-Becerril M, Guardiola F, Rojas M, Ascencio-Valle F, Esteban MÁ. Dietary administration of microalgae Navicula sp. affects immune status and gene expression of gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2013;35(3):883–9.PĂ©rez-SĂĄnchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, et al. Effects of dietary NEXT ENHANCE Âź 150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2015;44:117–28.Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland L-T, et al. Dietary butyrate helps to restore the intestinal status of a marine teleost (Sparus aurata) fed extreme diets low in fish meal and fish oil. PLoS One. 2016;11(11):1–21.Torrecillas S, Caballero MJ, Mompel D, Montero D, Zamorano MJ, Robaina L, et al. Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass (Dicentrarchus labrax) fed low fish meal and fish oil diets. Fish Shellfish Immunol. 2017;67:302–11.Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nat Protoc. 2008;3(6):1101–8.Omnes MH, Silva FCP, Moriceau J, Aguirre P, Kaushik S, Gatesoupe F-J. Influence of lupin and rapeseed meals on the integrity of digestive tract and organs in gilthead seabream (Sparus aurata L.) and goldfish (Carassius auratus L.) juveniles. Aquac Nutr. 2015;21:223–33.Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199:197–227.Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res. 2007;38:551–79.Kader MA, Bulbul M, Koshio S, Ishikawa M, Yokoyama S, Nguyen BT, et al. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture. 2012;350-353:109–16.GĂłmez-Requeni P, Mingarro M, Calduch-Giner JA, MĂ©dale F, Martin SAM, Houlihan DF, et al. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture. 2004;232(1–4):493–510.Kader MA, Koshio S, Ishikawa M, Yokoyama S, Bulbul M. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture. 2010;308(3–4):136–44.Mai K, Li H, Ai Q, Duan Q, Xu W, Zhang C, et al. Effects of dietary squid viscera meal on growth and cadmium accumulation in tissues of Japanese seabass, Lateolabrax japonicus (Cuvier 1828). Aquac Res. 2006;37(11):1063–9.Peres H, Oliva-Teles A. The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture. 2009;296(1–2):81–6.Cho CY, Slinger SJ, Bayley HS. Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol Part B. 1982;73(1):25–41.Venou B, Alexis MN, Fountoulaki E, Haralabous J. Effects of extrusion and inclusion level of soybean meal on diet digestibility , performance and nutrient utilization of gilthead sea bream ( Sparus aurata ). Aquaculture. 2006;261:343–56.Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.Terova G, Robaina L, Izquierdo M, Cattaneo A, Molinari S, Bernardini G, et al. PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sources. Springerplus. 2013;2:17.Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2(6):371–82.Adamidou S, Nengas I, Henry M, Grigorakis K, Rigos G, Nikolopoulou D, et al. Growth, feed utilization, health and organoleptic characteristics of European seabass (Dicentrarchus labrax) fed extruded diets including low and high levels of three different legumes. Aquaculture. 2009;293(3–4):263–71.DaprĂ  F, Gai F, Costanzo MT, Maricchiolo G, Micale V, Sicuro B, et al. Rice protein-concentrate meal as a potential dietary ingredient in practical diets for blackspot seabream Pagellus bogaraveo: a histological and enzymatic investigation. J Fish Biol. 2009;74(4):773–89.Overland M, Sorensen M, Storebakken T, Penn M, Krogdahl A, Skrede A. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)-effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture. 2009;288(3–4):305–11.Penn MH, Bendiksen EA, Campbell P, Krogdahl AS. High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture. 2011;310(3–4):267–73.Hedrera MI, Galdames JA, Jimenez-Reyes MF, Reyes AE, Avendaño-Herrera R, Romero J, et al. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One. 2013;8(7):1–10.Kokou F, Sarropoulou E, Cotou E, Rigos G, Henry M, Alexis M. Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of Gilthead Sea bream, Sparus aurata. J World Aquac Soc. 2015;46(2):115–28.Kokou F, Sarropoulou E, Cotou E, Kentouri M, Alexis M, Rigos G. Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2017;64:111–21.Calduch-Giner JA, SitjĂ -Bobadilla A, Davey GC, Cairns MT, Kaushik S, PĂ©rez-SĂĄnchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics. 2012;13(1):470.Piazzon MC, Galindo-Villegas J, Pereiro P, Estensoro I, Calduch-Giner JA, GĂłmez-Casado E, et al. Differential modulation of IgT and IgM upon parasitic, bacterial, viral, and dietary challenges in a perciform fish. Front Immunol. 2016;7. Article 637. https://doi.org/10.3389/fimmu.2016.00637 .Salinas I, Zhang Y, Sunyer JO. Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol. 2011;35(12):1346–65.Krogdahl A, Bakke-McKellep AM, Roed KH, Baeverfjord G. Feeding Atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquac Nutr. 2000;6:77–84.Chasiotis H, Effendi JC, Kelly SP. Occludin expression in goldfish held in ion-poor water. J Comp Physiol B Biochem Syst Environ Physiol. 2009;179(2):145–54.Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, Millan JL, Mostafa G, et al. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci. 2011;56(4):1020–7.Vaishnava S, Hooper LV. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe. 2007;2(6):365–7.Tort L. Stress and immune modulation in fish. Dev Comp Immunol [internet]. Elsevier Ltd. 2011;35(12):1366–75.Martin SAM, KrĂłl E. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev Comp Immunol. 2017;75:86–98.Burrells C, Williams PD, Southgate PJ, Crampton VO. Immunological , physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Vet Immunol Immunopathol. 1999;72:277–88.Sahlmann C, Sutherland BJG, Kortner TM, Koop BF, Krogdahl Å, Bakke AM. Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol. 2013;34(2):599–609.Esteban MÁ, Cuesta A, Ortuño J, Meseguer J. Immunomodulatory effects of dietary intake of chitin on gilthead seabream ( Sparus aurata L .) innate immune system. Fish Shellfish Immunol. 2001;11:303–15.Storebakken T, Kvien IS, Shearer KD, Grisdale-Helland B, Helland SJ. Estimation of gastrointestinal evacuation rate in Atlantic salmon (Salmo salar) using inert markers and collection of faeces by sieving: evacuation of diets with fish meal, soybean meal or bacterial meal. Aquaculture. 1999;172(3–4):291–9.Olsen RE, Myklebust R, RingĂž E, Mayhew TM. The influences of dietary linseed oil and saturated fatty acids on caecal enterocytes in Arctic char (Salvelinus alpinus L.): a quantitative ultrastructural study. Fish Physiol Biochem. 2000;22(3):207–16.Heikkinen J, Vielma J, KemilĂ€inen O, Tiirola M, Eskelinen P, Kiuru T, et al. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture. 2006;261(1):259–68.Krogdahl A, Bakke-McKellep AM, Baeverfjord G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac Nutr. 2003;9:361–71.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MA, Esteban MA. Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol. 2013;34(5):1063–70.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res. 2012;350(3):477–89.Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(suppl):1131S–41S.Kokou F, Rigos G, Henry M, Kentouri M, Alexis M. Growth performance, feed utilization and non-specific immune response of gilthead sea bream (Sparus aurata L.) fed graded levels of a bioprocessed soybean meal. Aquaculture. 2012;364-365:74–81

    Danielle Haase-Dubosc, Mary E. John, Marcelle Marini, Rama Molkote et Susie Tharu (dir.), Enjeux contemporains du féminisme indien, Ed. Maison des Sciences de l'Hommes, décembre 2002

    No full text
    Venou Fabienne. Danielle Haase-Dubosc, Mary E. John, Marcelle Marini, Rama Molkote et Susie Tharu (dir.), Enjeux contemporains du féminisme indien, Ed. Maison des Sciences de l'Hommes, décembre 2002. In: DiplÎmées, n°205, 2003. Huguette Delavault (1924-2003) pp. 104-106

    Investigation of the “BREEAM Communities” tool with respect to urban design

    No full text
    Urbanisation is an increasing phenomenon especially the last years, which is of major concern due to the damage that can cause on environmental components such as climate, biosphere, land and water resources. A prevalent way to control this damage and mitigate the negative impacts of urban areas, lately, is considered the use of international tools like BREEAM Communities. BREEAM Communities is a third party assessment and certification standard that assesses, rates and certifies international processes, addressing environmental, social and economic sustainability objectives that can have an impact on large-scale development projects. A prevailing aspect of an urban development process is the urban design part which demands a lot of effort during the whole process. This study, focuses on how BREEAM Communities incorporates and influences the urban design of a large-scale development. By analysis of case studies regarding development projects in Sweden that either used BREEAM Communities or rejected it, qualitative interviews with relevant actors and quantitative analysis of the tool with charts and diagrams, the benefits and the drawbacks of the tool in relation to urban design are being explored. The main methods used for collecting and analysing the data are a theoretical approach, case studies analysis and interviews. Based on the overall qualitative and quantitative results of this study, the tool proved to be urban design sensitive since it includes a wide range of issues related to urban design and in particular, it has the potential to provide inspiration and support to the urban design team from an early stage throughout the process. Finally, a set of certain guidelines for architects and urban designers were prepared in order to optimise their job by setting priorities and to make their work more time and cost efficient.Urbanisering har ökat kraftigt de senaste Ären, vilket gör urbaniseringens negativa effekter pÄ miljömÀssiga bestÄndsdelar som klimat, biosfÀr samt mark- och vattenresurser angelÀgna att utreda. Ett sÀtt att kontrollera och motverka de negativa miljöeffekterna frÄn stÀder har varit genom att anvÀnda internationella verktyg som BREEAM Communities. BREEAM Communities Àr en tredjeparts utvÀrderings- och certifieringsverktyg vilket utvÀrderar, klassificerar och certifierar internationella processer genom att vÀrdera miljömÀssigt, socialt och ekonomiskt hÄllbara mÄl vilka kan pÄverka storskaliga utvecklingsprojekt. En stor bestÄndsdel i ett stadsutvecklingsprojekt Àr designdelen, vilken krÀver mycket fokus under hela processen. Den hÀr uppsatsen fokuserar pÄ hur BREEAM Communities involverar och influerar stadsutvecklingen i ett storskaligt projekt. Genom att analysera utvecklingsprojekt i Sverige som antingen anvÀnde BREEAM Communities eller förkastade detta, genom kvalitativa intervjuer med relevanta aktörer och kvantitativa analyser av verktygen genom tabeller och diagram har fördelar och nackdelar med verktygen i relation till stadsutveckling och design utforskats. En teoretisk ansats har anvÀnts som huvudmetod för att samla in relevant data. Baserat pÄ de kvalitativa och kvantitativa resultaten framtrÀdde ett resultat som visar att verktygen var anvÀndbara vid stadsutveckling eftersom de inkluderar en lÄng rad olika frÄgor och har potential att tillhandahÄlla inspiration och support för stadsutvecklingsteamet redan frÄn ett tidigt stadie i processen. Dessutom var en del hjÀlpmedel förberedda för arkitekter och urbana designers för att optimera deras arbete genom att sÀtta upp en prioriteringslista och genom att göra deras arbete mer tids- och kostnadseffektivt.Research project at the Division of Environmental Strategies Analysis, KT

    Le mariage Ă  l’épreuve du travail en usine : ouvriĂšres de l’industrie de la chaussure en Inde du Sud

    No full text
    Tholpuram est une ville moyenne du Tamil Nadu (Inde du sud), caractĂ©risĂ©e par une industrie du cuir importante. Le travail de transformation des peaux est prĂ©sent dans cette rĂ©gion sous forme artisanale depuis le dĂ©but du XIXĂšme siĂšcle (Dupuis, 1960). L’activitĂ© de tannerie et ses procĂ©dĂ©s ont Ă©tĂ© rĂ©guliĂšrement transformĂ©s, particuliĂšrement lors de l’industrialisation du secteur soutenue par le gouvernement indien dans les annĂ©es soixante-dix. A partir des annĂ©es quatre-vingt, plusieurs propr..

    Origin of broodstock and effects on the deformities of gilthead sea bream (Sparus aurata L. 1758) in a Mediterranean commercial hatchery

    Get PDF
    Abstract The use of broodstock of different origin as a method to improve fry production performance and consequently to minimize deformities was examined at industrial scale in a commercial gilthead sea bream hatchery. The outcome of fry production from three different broodstock groups (BA: broodfish (Mediterranean) with multiannual hatchery presence, BB: selected offspring originating from the BA group, and BC: broodfish of Atlantic origin) was investigated in the same rearing conditions and feeding protocol. Performance factors assessed were the survival and weaning of the larvae; the mortality rates from the “weaning until the end of the hatchery stage” of the larvae/fry; the percentage of fry without swim bladder; the percentage of fry with skeletal deformities and the feed conversion ratio. In all factors, no statistical differences among the experimental groups were detected. However, due to early rejection of the deformed individuals, benefits are expected from the decrease of the supplied amount of food and the reduced labor cost

    Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.)

    No full text
    An experiment was conducted to evaluate the effects of dietary composition on apparent digestibility coefficients of protein, fat and carbohydrate of gilthead sea bream. In addition α-amylase and proteolytic activities were measured in the digestive tract of fish, held at 20 ± 1°C. Six experimental diets were formulated containing approximately 40%, 45% and 50% protein, 11% and 21% fat and a starch level which fluctuated from 14% to 36%. Fish having an average weight of 100-130 g were used, fed at 1.5% of their body weight daily, and digestibility was measured using an indirect method. Enzyme activities were measured in the digestive tract of fish, fed diets containing a combination of 40%, 50% protein with 11%, 21% fat at 0.5, 5, 10, 24 h after a single meal. Starch digestibility was reduced with its level in the diet. It also negatively affected fat digestibility as well as protein digestibility, the last only at the high fat level. Dietary fat level had a negative effect on starch and protein digestibility. Fat affected also strongly α-amylase levels in the digestive tract, while its effect on protease activity was of smaller magnitude. These results indicate that digestive enzyme activities and nutrient digestibility values are affected by dietary composition, carbohydrates and fat indicating the strongest effect. © 2005 Blackwell Publishing Ltd
    • 

    corecore