133 research outputs found
I Know I Can: Feeling Confident About Discussing Cancer May Help Couples\u27 Cancer Management
Managing chronic illness, especially something like cancer, affects more than the diagnosed person. Cancer also affects partners, families, and loved ones. In our study, we were interested in how cancer affects communication patterns between survivors and their partners. We wanted to apply a model that explains chronic illness management in couples to see if we could determine how parts of a relationship, uncertainty about cancer prognosis, and the confidence people have in talking with partners about the cancer affect couples’ ability to manage the disease
Fixed-bed gasification and pyrolysis of organic fraction of MSW blended with coal samples
Buildup of vast quantities of municipal solid waste (MSW) including refuse derived fuel, organic fraction around the urban areas has negative environmental consequences. Gasification and pyrolysis of municipal solid waste could be an attractive option to utilize or convert to a valuable product. This study investigates the thermochemical properties of refuse derived fuel (RDF), organic fraction of MSW (Org MSW) and coal samples. Along with proximate and elemental analysis, calorific values were provided for RDF, MSW organic fraction, and coal samples. This followed by the thermogravimetric analysis of the same samples. In addition, Org MSW MSW and coal samples were blended in a proportion of 0.5/0.5 and 0.25/0.75 and then thermally treated in horizontal tube furnace both under air and inert gases to investigate the pyrolysis and gasification processes. TGA tests revealed that volatile content from Org MSW and RDF begin to be emitted at temperatures above 180-200 °C. Org MSW and RDF lose all their volatile contents at 500 °C and 700 °C. Pyrolysis experiments revealed that below 500 °C mostly tars are formed from Org MSW. Organic MSW and coal 0.5/0.5 blends yielded higher methane concentrations than coal or MSW alone, reaching 35-37 % at 800 °C. It could be concluded that both fixed bed and thermogravimetric method analysis have provided a good result to investigate the gasification and pyrolysis processes
Pten alterations and their role in cancer management: Are we making headway on precision medicine?
Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and survival. This gene is also implicated in the modulation of the DNA damage response and in tumor immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible tailored schemes for cancer patients\u2019 clinical management, including risk assessment, diagnosis, prognostication, and treatment
Targeting immune-related biological processes in solid tumors : we do need biomarkers
Immunotherapy has become the standard-of-care in many solid tumors. Despite the significant recent achievements in the diagnosis and treatment of cancer, several issues related to patients' selection for immunotherapy remain unsolved. Multiple lines of evidence suggest that, in this setting, the vision of a single biomarker is somewhat na\uefve and imprecise, given that immunotherapy does not follow the rules that we have experienced in the past for targeted therapies. On the other hand, additional immune-related biomarkers that are reliable in real-life clinical practice remain to be identified. Recently, the immune-checkpoint blockade has been approved in the US irrespective of the tumor site of origin. Further histology-agnostic approvals, coupled with with tumor-specific companion diagnostics and guidelines, are expected in this field. In addition, immune-related biomarkers can also have a significant prognostic value. In this review, we provide an overview of the role of these biomarkers and their characterization in the management of lung cancer, melanoma, colorectal cancer, gastric cancer, head and neck cancer, renal cell carcinoma, urothelial cancers, and breast cancer
Integrating Biological Advances Into the Clinical Management of Breast Cancer Related Lymphedema
Breast cancer-related lymphedema (BCRL) occurs in a significant number of breast cancer survivors as a consequence of the axillary lymphatics' impairment after therapy (mainly axillary surgery and irradiation). Despite the recent achievements in the clinical management of these patients, BCRL is often diagnosed at its occurrence. In most cases, it remains a progressive and irreversible condition, with dramatic consequences in terms of quality of life and on sanitary costs. There are still no validated pre-surgical strategies to identify individuals that harbor an increased risk of BCRL. However, clinical, therapeutic, and tumor-specific traits are recurrent in these patients. Over the past few years, many studies have unraveled the complexity of the molecular and transcriptional events leading to the lymphatic system ontogenesis. Additionally, molecular insights are coming from the study of the germline alterations involved at variable levels in BCRL models. Regrettably, there is a substantial lack of predictive biomarkers for BCRL, given that our knowledge of its molecular milieu remains extremely puzzled. The purposes of this review were (i) to outline the biology underpinning the ontogenesis of the lymphatic system; (ii) to assess the current state of knowledge of the molecular alterations that can be involved in BCRL pathogenesis and progression; (iii) to discuss the present and short-term future perspectives in biomarker-based patients' risk stratification; and (iv) to provide practical information that can be employed to improve the quality of life of these patients
Extracting novel facts from tables for Knowledge Graph completion
We propose a new end-to-end method for extending a Knowledge Graph (KG) from tables. Existing techniques tend to interpret tables by focusing on information that is already in the KG, and therefore tend to extract many redundant facts. Our method aims to find more novel facts. We introduce a new technique for table interpretation based on a scalable graphical model using entity similarities. Our method further disambiguates cell values using KG embeddings as additional ranking method. Other distinctive features are the lack of assumptions about the underlying KG and the enabling of a fine-grained tuning of the precision/recall trade-off of extracted facts. Our experiments show that our approach has a higher recall during the interpretation process than the state-of-the-art, and is more resistant against the bias observed in extracting mostly redundant facts since it produces more novel extractions
Spatially Resolved Molecular Approaches for the Characterisation of Non-Invasive Follicular Tumours with Papillary-like Features (NIFTPs)
Noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) are low-risk thyroid lesions most often characterised by RAS-type mutations. The histological diagnosis may be challenging, and even immunohistochemistry and molecular approaches have not yet provided conclusive solutions. This study characterises a set of NIFTPs by Matrix-Assisted Laser Desorption/Ionisation (MALDI)-Mass Spectrometry Imaging (MSI) to highlight the proteomic signatures capable of overcoming histological challenges. Archived formalin-fixed paraffin-embedded samples from 10 NIFTPs (n = 6 RAS-mutated and n = 4 RAS-wild type) were trypsin-digested and analysed by MALDI-MSI, comparing their profiles to normal tissue and synchronous benign nodules. This allowed the definition of a four-peptide signature able to distinguish RAS-mutant from wild-type cases, the latter showing proteomic similarities to hyperplastic nodules. Moreover, among the differentially expressed signals, Peptidylprolyl Isomerase A (PPIA, 1505.8 m/z), which has already demonstrated a role in the development of cancer, was found overexpressed in NIFTP RAS-mutated nodules compared to wild-type lesions. These results underlined that high-throughput proteomic approaches may add a further level of biological comprehension for NIFTPs. In the future, thanks to the powerful single-cell detail achieved by new instruments, the complementary NGS-MALDI imaging sequence might be the correct methodological approach to confirm that the current NIFTP definition encompasses heterogeneous lesions that must be further characterised
Value at Risk models with long memory features and their economic performance
We study alternative dynamics for Value at Risk (VaR) that incorporate a slow moving component and information on recent aggregate returns in established quantile (auto) regression models. These models are compared on their economic performance, and also on metrics of first-order importance such as violation ratios. By better economic performance, we mean that changes in the VaR forecasts should have a lower variance to reduce transaction costs and should lead to lower exceedance sizes without raising the average level of the VaR. We find that, in combination with a targeted estimation strategy, our proposed models lead to improved performance in both statistical and economic terms
Data Integration for Open Data on the Web
In this lecture we will discuss and introduce challenges of
integrating openly available Web data and how to solve them. Firstly,
while we will address this topic from the viewpoint of Semantic Web
research, not all data is readily available as RDF or Linked Data, so
we will give an introduction to different data formats prevalent on the
Web, namely, standard formats for publishing and exchanging tabular,
tree-shaped, and graph data. Secondly, not all Open Data is really completely
open, so we will discuss and address issues around licences, terms
of usage associated with Open Data, as well as documentation of data
provenance. Thirdly, we will discuss issues connected with (meta-)data
quality issues associated with Open Data on the Web and how Semantic
Web techniques and vocabularies can be used to describe and remedy
them. Fourth, we will address issues about searchability and integration
of Open Data and discuss in how far semantic search can help to overcome
these. We close with briefly summarizing further issues not covered
explicitly herein, such as multi-linguality, temporal aspects (archiving,
evolution, temporal querying), as well as how/whether OWL and RDFS
reasoning on top of integrated open data could be help
Non-small cell lung cancer testing on reference specimens: an italian multicenter experience
Introduction: Biomarker testing is mandatory for the clinical management of patients with advanced non-small cell lung cancer (NSCLC). Myriads of technical platforms are now available for biomarker analysis with differences in terms of multiplexing capability, analytical sensitivity, and turnaround time (TAT). We evaluated the technical performance of the diagnostic workflows of 24 representative Italian institutions performing molecular tests on a series of artificial reference specimens built to mimic routine diagnostic samples.
Methods: Sample sets of eight slides from cell blocks of artificial reference specimens harboring exon 19 EGFR (epidermal growth factor receptor) p.E746_AT50del, exon 2 KRAS (Kirsten rat sarcoma viral oncogene homologue) p.G12C, ROS1 (c-ros oncogene 1)-unknown gene fusion, and MET (MET proto-oncogene, receptor tyrosine kinase) Δ exon 14 skipping were distributed to each participating institution. Two independent cell block specimens were validated by the University of Naples Federico II before shipment. Methodological and molecular data from reference specimens were annotated.
Results: Overall, a median DNA concentration of 3.3 ng/μL (range 0.1–10.0 ng/μL) and 13.4 ng/μL (range 2.0–45.8 ng/μL) were obtained with automated and manual technical procedures, respectively. RNA concentrations of 5.7 ng/μL (range 0.2–11.9 ng/μL) and 9.3 ng/μL (range 0.5–18.0 ng/μL) were also detected. KRAS exon 2 p.G12C, EGFR exon 19 p.E736_A750del hotspot mutations, and ROS1 aberrant transcripts were identified in all tested cases, whereas 15 out of 16 (93.7%) centers detected MET exon 14 skipping mutation.
Conclusions: Optimized technical workflows are crucial in the decision-making strategy of patients with NSCLC. Artificial reference specimens enable optimization of diagnostic workflows for predictive molecular analysis in routine clinical practice
- …