15 research outputs found
Serial [F-18]-FDHT-PET to predict bicalutamide efficacy in patients with androgen receptor positive metastatic breast cancer
Background: The androgen receptor (AR) is a potential target in metastatic breast cancer (MBC), and 16 beta-[F-18]-fluoro-5 alpha-dihydrotestosterone positron emission tomography ([F-18]-FDHT-PET) can be used for noninvasive visualisation of AR. [F-18]-FDHT uptake reduction during AR-targeting therapy reflects AR occupancy and might be predictive for treatment response. We assessed the feasibility of [F-18]-FDHT-PET to detect changes in AR availability during bicalutamide treatment and correlated these changes with treatment response. Patients and methods: Patients with AR thorn MBC, regardless of oestrogen receptor status, received an [F-18]-FDHT-PET at baseline and after 4-6 weeks bicalutamide treatment. Baseline [F-18]-FDHT uptake was expressed as maximum standardised uptake value. Percentage change in tracer uptake, corrected for background activity (SUVcor), between baseline and follow-up PET scan (% reduction), was assessed per-patient and lesion. Clinical benefit was determined in accordance with Response Evaluation Criteria in Solid Tumours (RECIST) 1.1 or clinical evaluation (absence of disease progression for >= 24 weeks). Results: Baseline [F-18]-FDHT-PET in 21 patients detected 341 of 515 lesions found with standard imaging and 21 new lesions. Follow-up [F-18]-FDHT- PET was evaluable in 17 patients with 349 lesions, showing a decrease in median SUVcor from 1.3 to 0.7 per-patient and lesion (P <0.001). Median % reduction per-patient was - 45% and per-lesion -39%. In patients with progressive disease (n Z 11), median % reduction was -30% versus -53% for patients who showed clinical benefit (in accordance with RECIST (n = 3) or clinical evaluation (n = 3); P Z 0.338). Conclusion: In this feasibility study, a bicalutamide-induced reduction in [F-18]-FDHT uptake could be detected by follow-up [F-18]-FDHT-PET in patients with AR thorn MBC. However, this change could not predict bicalutamide response. (C) 2020 The Authors. Published by Elsevier Ltd
Molecular imaging to identify patients with metastatic breast cancer who benefit from endocrine treatment combined with cyclin-dependent kinase inhibition
BACKGROUND: Adding cyclin-dependent kinase (CDK) inhibitor to endocrine treatment improves outcome in œstrogen receptor (ER) positive metastatic breast cancer, but identifying the subset of patients who benefit is challenging. Response is potentially associated with ER expression heterogeneity. This is because, unlike the primary tumour in the breast that is localized to the organ, the metastatic breast cancer has spread and continues to spread to distant locations in the body such as bones, lungs, liver, axial skeleton, even to the central nervous system like the brain, wherefrom obtaining biopsies are not easy, and also, the metastasised tissues are heterogeneous. Positron emission tomography (PET) with 16α-[18F]fluoro-17β-œstradiol (FES), briefly referred to as FES-PET, allows whole-body ER assessment. We explored whether FES-PET heterogeneity and FES uptake were related to letrozole and palbociclib outcome, in patients with ER positive, metastatic breast cancer. PATIENTS AND METHODS: Patients underwent a baseline FES-PET and 18F-fluorodeoxyglucose (FDG) PET, the FDG-PET served to help identify active sites of breast cancer with contrast-enhanced computed tomography (CT). FES-PET heterogeneity score (% FES positive lesions divided by all lesions on FDG-PET and/or CT) and FES uptake were related to outcome and 8-week FDG-PET response. Circulating tumour DNA (CtDNA) samples for ESR1 mutation analysis were collected at baseline. RESULTS: In 30 patients with 864 metastatic lesions, baseline FES-PET heterogeneity was assessed. In 27 patients with 688 lesions, response was evaluated. Median time to progression (TTP) was 73 weeks (95% confidence interval [CI] 21 to ∞) in 7 patients with 100% FES positive disease, 27 weeks (14-49) in heterogeneous FES positive disease (20 patients), and 15 weeks (9 to ∞) without FES positivity (three patients; log-rank P = 0.30). Geometric mean FES uptake was 2.3 for metabolic progressive patients, 2.5 (Pvs progression = 0.82) for metabolic stable disease, and 3.3 (Pvs progression = 0.40) for metabolic response (Ptrend = 0.21). ESR1 mutations, found in 13/23 patients, were unrelated to FES uptake. CONCLUSION: This exploratory study suggests that FES-PET heterogeneity may potentially identify the subset of ER positive, metastatic breast cancer patients who benefit from letrozole combined with CDK inhibition. CLINICAL TRIAL INFORMATION: NCT02806050
A phase 1b study evaluating the effect of elacestrant treatment on estrogen receptor availability and estradiol binding to the estrogen receptor in metastatic breast cancer lesions using 18F-FES PET/CT imaging
Background: Elacestrant is an oral selective estrogen receptor (ER) degrader. This phase 1b open-label, non-randomized study (RAD1901-106) was initiated to determine the effect of elacestrant on the availability of ER in lesions from postmenopausal women with ER+ advanced breast cancer (ABC) using 16α-18F-fluoro-17β-estradiol positron emission tomography with low-dose computed tomography (FES-PET/CT). Methods: Eligible patients were postmenopausal women with ER+, HER2- ABC; tumor progression after ≥ 6 months of 1-3 lines of endocrine treatment for ABC; and measurable or evaluable disease. Two 8-patient cohorts were enrolled: one treated with 400 mg elacestrant once daily (QD) and one treated with 200 mg elacestrant QD with dose escalation to 400 mg QD after 14 days. Elacestrant was dosed continuously until progressive disease, toxicity, or withdrawal. FES-PET/CT was performed pre-dose at baseline and 4 h post-dose on day 14. The primary endpoint was the percentage difference in FES uptake in tumor lesions (maximum 20) after 14 days of treatment compared to baseline. Overall response was investigator-assessed by Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1. Results: Patients (n = 16; median age, 53.5 years) had ABC with a median 2.5 prior lines of endocrine therapy. Median reduction in tumor FES uptake from baseline to day 14 was 89.1% (Q1, Q3: 75.1%, 94.1%) and was similar in both cohorts (89.1% [Q1, Q3: 67.4%, 94.2%], 200/400 mg and 88.7% [Q1, Q3: 79.5%, 94.1%], 400 mg). Residual ER availability (> 25% persistence in FES uptake) on day 14 was observed in 3 patients receiving 200/400 mg (3/78, 37.5%) and 1 patient receiving 400 mg (1/8, 12.5%). The overall response rate (ORR) was 11.1% (1 partial response), and clinical benefit rate (CBR) was 30.8%. Median percentage change in FES uptake did not correlate with ORR or CBR. Adverse events occurring in > 20% of the patients were nausea (68.8%), fatigue (50.0%), dyspepsia (43.8%), vomiting (37.5%), and decreased appetite, dysphagia, and hot flush (31.3% each). Most events were grade 2 in severity. Conclusion: Elacestrant 200 mg and 400 mg QD greatly reduced ER availability measured by FES-PET/CT. In a heavily pretreated population, elacestrant was associated with antitumor activity. Trial registration: ClinicalTrials.gov, NCT02650817. Registered on 08 January 201
Recommendations and Technical Aspects of 16α-[18F]Fluoro-17β-Estradiol PET to Image the Estrogen Receptor In Vivo:The Groningen Experience
The estrogen derivative 16a-F-18-fluoro-17 beta-estradiol (FES) is a PET tracer that has been used in a variety of preclinical and clinical studies to detect estrogen receptor (ER) expression, mainly in breast cancer, but also for other oncological indications. As a result of the success of these studies and the potential applications of the tracer, FES starts to be implemented in routine clinical practice. However, the number of centers using this tracer is still limited and many nuclear medicine physicians and medical oncologists are still unaware of the possibilities FES PET imaging offers. The aim of this article is therefore to give an overview of the main indications of FES PET in oncology and to provide recommendations on correct use of this imaging technique. This includes precautions that have to be taken for patient preparation, procedures for the acquisition of the scans, the physiological distribution of the tracer, factors that might influence tracer uptake and guidance for image analysis, quantification of tracer uptake, and reporting of the scans.</p
Translation of New Molecular Imaging Approaches to the Clinical Setting:Bridging the Gap to Implementation
Molecular imaging with PET is a rapidly emerging technique. In breast cancer patients, more than 45 different PET tracers have been or are presently being tested. With a good rationale, after development of the tracer and proven feasibility, it is of interest to evaluate whether there is a potential meaningful role for the tracer in the clinical setting-such as in staging, in the (early) prediction of a treatment response, or in supporting drug choices. So far, only F-18-FDG PET has been incorporated into breast cancer guidelines. For proof of the clinical relevance of tracers, especially for analysis in a multicenter setting, standardization of the technology and access to the novel PET tracer are required. However, resources for PET implementation research are limited. Therefore, next to randomized studies, novel approaches are required for proving the clinical value of PET tracers with the smallest possible number of patients. The aim of this review is to describe the process of the development of PET tracers and the level of evidence needed for the use of these tracers in breast cancer. Several breast cancer trials have been performed with the PET tracers 18F-FDG, 3'-deoxy-3'-F-18-fluorothymidine (F-18-FLT), and F-18-fluoroestradiol (F-18-FES). We studied them to learn lessons for the implementation of novel tracers. After defining the gap between a good rationale for a tracer and implementation in the clinical setting, we propose solutions to fill the gap to try to bring more PET tracers to daily clinical practice
A phase 1b study evaluating the effect of elacestrant treatment on estrogen receptor availability and estradiol binding to the estrogen receptor in metastatic breast cancer lesions using(18)F-FES PET/CT imaging
BACKGROUND: Elacestrant is an oral selective estrogen receptor (ER) degrader. This phase 1b open-label, non-randomized study (RAD1901-106) was initiated to determine the effect of elacestrant on the availability of ER in lesions from postmenopausal women with ER+ advanced breast cancer (ABC) using 16α-18F-fluoro-17β-estradiol positron emission tomography with low-dose computed tomography (FES-PET/CT). METHODS: Eligible patients were postmenopausal women with ER+, HER2- ABC; tumor progression after ≥ 6 months of 1-3 lines of endocrine treatment for ABC; and measurable or evaluable disease. Two 8-patient cohorts were enrolled: one treated with 400 mg elacestrant once daily (QD) and one treated with 200 mg elacestrant QD with dose escalation to 400 mg QD after 14 days. Elacestrant was dosed continuously until progressive disease, toxicity, or withdrawal. FES-PET/CT was performed pre-dose at baseline and 4 h post-dose on day 14. The primary endpoint was the percentage difference in FES uptake in tumor lesions (maximum 20) after 14 days of treatment compared to baseline. Overall response was investigator-assessed by Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1. RESULTS: Patients (n = 16; median age, 53.5 years) had ABC with a median 2.5 prior lines of endocrine therapy. Median reduction in tumor FES uptake from baseline to day 14 was 89.1% (Q1, Q3: 75.1%, 94.1%) and was similar in both cohorts (89.1% [Q1, Q3: 67.4%, 94.2%], 200/400 mg and 88.7% [Q1, Q3: 79.5%, 94.1%], 400 mg). Residual ER availability (> 25% persistence in FES uptake) on day 14 was observed in 3 patients receiving 200/400 mg (3/78, 37.5%) and 1 patient receiving 400 mg (1/8, 12.5%). The overall response rate (ORR) was 11.1% (1 partial response), and clinical benefit rate (CBR) was 30.8%. Median percentage change in FES uptake did not correlate with ORR or CBR. Adverse events occurring in > 20% of the patients were nausea (68.8%), fatigue (50.0%), dyspepsia (43.8%), vomiting (37.5%), and decreased appetite, dysphagia, and hot flush (31.3% each). Most events were grade 2 in severity. CONCLUSION: Elacestrant 200 mg and 400 mg QD greatly reduced ER availability measured by FES-PET/CT. In a heavily pretreated population, elacestrant was associated with antitumor activity. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02650817 . Registered on 08 January 2016.status: publishe
Consideration of breast cancer subtype in targeting the androgen receptor
The androgen receptor (AR) is a drug target in breast cancer, and AR-targeted therapies have induced tumor responses in breast cancer patients. In this review, we summarized the role of AR in breast cancer based on preclinical and clinical data. Response to AR-targeted therapies in unselected breast cancer populations is relatively low. Pre-clinical and clinical data show that AR antagonists might have a role in estrogen receptor (ER)-negative/AR-positive tumors. The prognostic value of AR for patients remains uncertain due to the use of various antibodies and cut-off values for immunohistochemical assessment. To get more insight into the role of AR in breast cancer, we additionally performed a retrospective pooled analysis to determine the prognostic value of the AR using mRNA profiles of 7270 primary breast tumors. Our analysis shows that a higher AR mRNA level is associated with improved disease outcome in patients with ER-positive/human epidermal growth factor receptor 2 (HER2)-negative tumors, but with worse disease outcome in HER2-positive subgroups. In conclusion, next to AR expression, incorporation of additional tumor characteristics will potentially make AR targeting a more valuable therapeutic strategy in breast cancer. (C) 2019 The Authors. Published by Elsevier Inc