688 research outputs found

    Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles

    Get PDF
    Using sequences of the mitochondrial 16S rRNA gene, we reconstructed the phylogeography of six widely distributed Malagasy reptiles: two gekkonid lizard species, Phelsuma lineata and Hemidactylus mercatorius; two chameleons, the Calumma brevicorne complex, and Furcifer lateralis; and two skinks, Trachylepis gravenhorstii and Trachylepis elegans. Genetic differentiation among major haplotype lineages was high and in some cases indicates or confirms species status of the divergent populations. Maximum uncorrected sequence divergences were between 2.2% and 8.3% within the various species or species complexes. Haplotype lineages were exclusive to geographic regions, except in the commensal H. mercatorius where in three anthropogenic habitats coexistence of haplotype lineages was observed, possibly due to human translocation. The eastward flowing rivers Mangoro and Mananara may represent barriers to gene flow in the case of three species each. Some species sampled from humid eastern and arid western Madagascar showed no differentiation between populations from these two regions; instead the pattern observed was in several cases more concordant with a differentiation along a north-south axis

    Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes

    Get PDF
    The joints of mammals are lined with cartilage, comprised of individual chondrocytes embedded in a specialized extracellular matrix. Chondrocytes experience a complex mechanical environment and respond to changing mechanical loads in order to maintain cartilage homeostasis. It has been proposed that mechanically gated ion channels are of functional importance in chondrocyte mechanotransduction; however, direct evidence of mechanical current activation in these cells has been lacking. We have used high-speed pressure clamp and elastomeric pillar arrays to apply distinct mechanical stimuli to primary murine chondrocytes, stretch of the membrane and deflection of cell-substrate contacts points, respectively. Both TRPV4 and PIEZO1 channels contribute to currents activated by stimuli applied at cell-substrate contacts but only PIEZO1 mediates stretch-activated currents. These data demonstrate that there are separate, but overlapping, mechanoelectrical transduction pathways in chondrocytes

    Initial diversification of living amphibians predated the breakup of Pangaea

    Get PDF
    The origin and divergence of the three living orders of amphibians (Anura, Caudata, Gymnophiona) and their main lineages are one of the most hotly debated topics in vertebrate evolution. Here, we present a robust molecular phylogeny based on the nuclear RAG1 gene as well as results from a variety of alternative independent molecular clock calibrations. Our analyses suggest that the origin and early divergence of the three living amphibian orders dates back to the Palaeozoic or early Mesozoic, before the breakup of Pangaea, and soon after the divergence from lobe-finned fishes. The resulting new biogeographic scenario, age stimate, and the inferred rapid divergence of the three lissamphibian orders may account for the lack of fossils that represent plausible ancestors or immediate sister taxa of all three orders and the heretofore paradoxical distribution of some amphibian fossil taxa. Furthermore, the ancient and rapid radiation of the three lissamphibian orders likely explains why branch lengths connecting their early nodes are particularly short, thus rendering phylogenetic inference of implicated relationships especially difficult

    Ten microsatellite loci for the strawberry poison frog (Oophaga pumilio)

    Get PDF
    We describe primers and PCR conditions to amplify nine new tetranucleotide loci and one new dinucleotide locus isolated from the strawberry poison frog (Oophaga pumilio). In 21 individuals from Costa Rica, the number of alleles ranged from 4 to 16, observed heterozygosities from 40 to 100%, and polymorphic information content ranged from 0.60 to 0.90 per locus. Evidence for linkage disequilibrium was found only between two loci, but this pattern was not found in other populations tested. All primer pairs cross-amplified in Oophaga vicentei from Panama

    Spatial and temporal arrival patterns of Madagascar's vertebrate fauna explained by distance, ocean currents, and ancestor type

    Get PDF
    How, when, and from where Madagascar's vertebrates arrived on the island is poorly known, and a comprehensive explanation for the distribution of its organisms has yet to emerge. We begin to break that impasse by analyzing vertebrate arrival patterns implied by currently existing taxa. For each of 81 clades, we compiled arrival date, source, and ancestor type (obligate freshwater, terrestrial, facultative swimmer, or volant). We analyzed changes in arrival rates, with and without adjusting for clade extinction. Probability of successful transoceanic dispersal is negatively correlated with distance traveled and influenced by ocean currents and ancestor type. Obligate rafters show a decrease in probability of successful transoceanic dispersal fromthe Paleocene onward, reaching the lowest levels after the mid- Miocene. This finding is consistent with a paleoceanographic model [Ali JR, HuberM(2010) Nature 463:653-656] that predicts Early Cenozoic surface currents periodically conducive to rafting or swimming fromAfrica, followed by a reconfiguration to present-day flow15-20 million years ago that significantly diminished the ability for transoceanic dispersal to Madagascar from the adjacent mainland

    The integrative future of taxonomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Taxonomy is the biological discipline that identifies, describes, classifies and names extant and extinct species and other taxa. Nowadays, species taxonomy is confronted with the challenge to fully incorporate new theory, methods and data from disciplines that study the origin, limits and evolution of species.</p> <p>Results</p> <p>Integrative taxonomy has been proposed as a framework to bring together these conceptual and methodological developments. Here we review perspectives for an integrative taxonomy that directly bear on what species are, how they can be discovered, and how much diversity is on Earth.</p> <p>Conclusions</p> <p>We conclude that taxonomy needs to be pluralistic to improve species discovery and description, and to develop novel protocols to produce the much-needed inventory of life in a reasonable time. To cope with the large number of candidate species revealed by molecular studies of eukaryotes, we propose a classification scheme for those units that will facilitate the subsequent assembly of data sets for the formal description of new species under the Linnaean system, and will ultimately integrate the activities of taxonomists and molecular biologists.</p

    Voltage gating of mechanosensitive PIEZO channels

    Get PDF
    Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts

    Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric species

    Get PDF
    Background: DNA barcoding based on the mitochondrial cytochrome oxidase subunit I gene (cox1 or COI) has been successful in species identification across a wide array of taxa but in some cases failed to delimit the species boundaries of closely allied allopatric species or of hybridising sister species. Methodology/Principal Findings: In this study we extend the sample size of prior studies in birds for cox1 (2776 sequences, 756 species) and target especially species that are known to occur parapatrically, and/or are known to hybridise, on a Holarctic scale. In order to obtain a larger set of taxa (altogether 2719 species), we include also DNA sequences of two other mitochondrial genes: cytochrome b (cob) (4614 sequences, 2087 species) and 16S (708 sequences, 498 species). Our results confirm the existence of a wide gap between intra- and interspecies divergences for both cox1 and cob, and indicate that distance-based DNA barcoding provides sufficient information to identify and delineate bird species in 98% of all possible pairwise comparisons. This DNA barcoding gap was not statistically influenced by the number of individuals sequenced per species. However, most of the hybridising parapatric species pairs have average divergences intermediate between intraspecific and interspecific distances for both cox1 and cob. Conclusions/Significance: DNA barcoding, if used as a tool for species discovery, would thus fail to identify hybridising parapatric species pairs. However, most of them can probably still assigned to known species by character-based approaches, although development of complementary nuclear markers will be necessary to account for mitochondrial introgression in hybridising species

    Genomic heterogeneity of historical gene flow between two species of newts inferred from transcriptome data

    Get PDF
    The role of gene flow in species formation is a major unresolved issue in speciation biology. Progress in this area requires information on the long‐term patterns of gene flow between diverging species. Here, we used thousands of single‐nucleotide polymorphisms derived from transcriptome resequencing and a method modeling the joint frequency spectrum of these polymorphisms to reconstruct patterns of historical gene flow between two Lissotriton newts: L. vulgaris (Lv) and L. montandoni (Lm). We tested several models of divergence including complete isolation and various scenarios of historical gene flow. The model of secondary contact received the highest support. According to this model, the species split from their common ancestor ca. 5.5 million years (MY) ago, evolved in isolation for ca. 2 MY, and have been exchanging genes for the last 3.5 MY Demographic changes have been inferred in both species, with the current effective population size of ca. 0.7 million in Lv and 0.2 million in Lm. The postdivergence gene flow resulted in two‐directional introgression which affected the genomes of both species, but was more pronounced from Lv to Lm. Interestingly, we found evidence for genomic heterogeneity of interspecific gene flow. This study demonstrates the complexity of long‐term gene flow between distinct but incompletely reproductively isolated taxa which divergence was initiated millions of years ago
    corecore