1,394 research outputs found

    Heat kernel and number theory on NC-torus

    Get PDF
    The heat trace asymptotics on the noncommutative torus, where generalized Laplacians are made out of left and right regular representations, is fully determined. It turns out that this question is very sensitive to the number-theoretical aspect of the deformation parameters. The central condition we use is of a Diophantine type. More generally, the importance of number theory is made explicit on a few examples. We apply the results to the spectral action computation and revisit the UV/IR mixing phenomenon for a scalar theory. Although we find non-local counterterms in the NC ϕ4\phi^4 theory on \T^4, we show that this theory can be made renormalizable at least at one loop, and may be even beyond

    Fertility and gonadal function in female survivors after treatment of early unfavorable Hodgkin lymphoma (HL) within the German Hodgkin Study Group HD14 trial

    Get PDF
    Background In the HD14 trial, 2× BEACOPPescalated+2× ABVD (2+2) has improved the primary outcome. Compared with 4× ABVD, this benefit might be compromised by more infertility in women. Therefore, we analyzed gonadal function and fertility. Patients and methods Women ≤45 years in ongoing remission at least 1 year after therapy were included. Hormone parameters, menopausal symptoms, measures to preserve fertility, menstrual cycle, pregnancies, and offspring were evaluated. Results Three hundred and thirty one of 579 women addressed participated (57.2%) and 263 per-protocol treated patients qualified (A=ABVD: 137, B=2+2: 126, mean time after therapy 42 and 43 months, respectively). Regular menstrual cycle after treatment (A: 87%, B: 83%) and time to recovery (≤12 months) were not different. Follicle-stimulating hormone and anti-Muellerian hormone were significantly better in arm A. However, pregnancies after therapy favored arm B (A: 15%, B: 26%, P=0.043) and motherhood rates were equivalent to the German normal population. Multivariate analysis revealed prophylactic use of gonadotropin-releasing hormone (GnRH) analogues as highly significant prognostic factor for preservation of fertility (odds ratio=12.87, P=0.001). Severe menopausal symptoms were frequent in women ≥30 years (A: 21%, B: 25%). Conclusions Hormonal levels after 2+2 indicate a reduced ovarian reserve. However, 2+2 in combination with GnRH analogues does not compromise fertility within the evaluated observation tim

    Nearby supernova host galaxies from the CALIFA Survey: II. SN environmental metallicity

    Get PDF
    The metallicity of a supernova (SN) progenitor, together with its mass, is one of the main parameters that rules their outcome. We present a metallicity study of 115 nearby SN host galaxies (0.005<z<0.03) which hosted 142 SNe using Integral Field Spectroscopy (IFS) from the CALIFA survey. Using O3N2 we found no statistically significant differences between the gas-phase metallicities at the locations of the three main SN types (Ia, Ib/c and II) all having ~8.50±\pm0.02 dex. The total galaxy metallicities are also very similar and we argue that this is because our sample consists only of SNe discovered in massive galaxies (log(M/Msun)>10 dex) by targeted searches. We also found no evidence that the metallicity at the SN location differs from the average metallicity at the GCD of the SNe. By extending our SN sample with published metallicities at the SN location, we studied the metallicity distributions for all SN subtypes split into SN discovered in targeted and untargeted searches. We confirm a bias toward higher host masses and metallicities in the targeted searches. Combining data from targeted and untargeted searches we found a sequence from higher to lower local metallicity: SN Ia, Ic, and II show the highest metallicity, which is significantly higher than SN Ib, IIb, and Ic-BL. Our results support the picture of SN Ib resulting from binary progenitors and, at least part of, SN Ic being the result of single massive stars stripped of their outer layers by metallicity driven winds. We studied several proxies of the local metallicity frequently used in the literature and found that the total host metallicity allows for the estimation of the metallicity at the SN location with an accuracy better than 0.08 dex and very small bias. In addition, weak AGNs not seen in total spectra may only weakly bias (by 0.04 dex) the metallicity estimate from integrated spectra. (abridged)Comment: 24 pages, 16 Figures, 13 Tables, Accepted in A&

    The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics

    Get PDF
    A longstanding limitation of first-principles calculations of substitutional alloy phase diagrams is the difficulty to account for lattice vibrations. A survey of the theoretical and experimental literature seeking to quantify the impact of lattice vibrations on phase stability indicates that this effect can be substantial. Typical vibrational entropy differences between phases are of the order of 0.1 to 0.2 k_B/atom, which is comparable to the typical values of configurational entropy differences in binary alloys (at most 0.693 k_B/atom). This paper describes the basic formalism underlying ab initio phase diagram calculations, along with the generalization required to account for lattice vibrations. We overview the various techniques allowing the theoretical calculation and the experimental determination of phonon dispersion curves and related thermodynamic quantities, such as vibrational entropy or free energy. A clear picture of the origin of vibrational entropy differences between phases in an alloy system is presented that goes beyond the traditional bond counting and volume change arguments. Vibrational entropy change can be attributed to the changes in chemical bond stiffness associated with the changes in bond length that take place during a phase transformation. This so-called ``bond stiffness vs. bond length'' interpretation both summarizes the key phenomenon driving vibrational entropy changes and provides a practical tool to model them.Comment: Submitted to Reviews of Modern Physics 44 pages, 6 figure

    Multiple reflection expansion and heat kernel coefficients

    Get PDF
    We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be non-convergent.Comment: 21 pages, corrected for some misprint

    Tracing kinematic (mis)alignments in CALIFA merging galaxies: Stellar and ionized gas kinematic orientations at every merger stage

    Get PDF
    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. We compare our sample with 80 non-interacting galaxies. We measure for the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin_{\mathrm{kin}}, approaching and receding) directly from the velocity fields with no assumptions on the internal motions. This method allow us to derive the deviations of the kinematic PAs from a straight line (δ\deltaPAkin_{\mathrm{kin}}). Around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. Those misalignments are present mostly in galaxies with morphological signatures of interaction. Alignment between the kinematic sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA from a straight line in the stellar component measured by δ\deltaPAkin_{\mathrm{kin}} are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δ\deltaPAkin_{\mathrm{kin}} is larger than typical values derived from isolated galaxies (48%), making this parameter a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16 degrees, compared to 10% from the control sample. Our results show the impact of interactions in the internal structure of galaxies as well as the wide variety of their velocity distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift.Comment: 24 pages,11 Figures, Accepted for publication in Astronomy & Astrophysics. The entire set of stellar and ionized gas velocity fields of the interacting/merging sample will be available in the electronic version of the journa

    The Mass-Metallicity relation explored with CALIFA: I. Is there a dependence on the star formation rate?

    Full text link
    We present the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2-3 effective radii), with enough resolution to separate individual HII regions and/or aggregations. Nearly \sim3000 individual HII regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen abundance and star-formation rate associated with each region. In addition, we have computed the integrated and spatially resolved stellar masses (and surface densities), based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion smaller than the one already reported in the literature (σΔlog(O/H)=\sigma_{\Delta{\rm log(O/H)}}=0.07 dex). Indeed, this dispersion is only slightly larger than the typical error derived for our oxygen abundances. However, we do not find any secondary relation with the star-formation rate, other than the one induced due to the primary relation of this quantity with the stellar mass. We confirm the result using the \sim3000 individual HII regions, for the corresponding local relations. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.Comment: 19 Pages, 8 figures, Accepted for Publishing in Astronomy and Astrophysics (A&A

    Strangeness enhancements at central rapidity in 40 A GeV/c Pb-Pb collisions

    Full text link
    Results are presented on neutral kaon, hyperon and antihyperon production in Pb-Pb and p-Be interactions at 40 GeV/c per nucleon. The enhancement pattern follows the same hierarchy as seen in the higher energy data - the enhancement increases with the strangeness content of the hyperons and with the centrality of collision. The centrality dependence of the Pb-Pb yields and enhancements is steeper at 40 than at 158 A GeV/c. The energy dependence of strangeness enhancements at mid-rapidity is discussed.Comment: 15 pages, 10 figures and 3 tables. Presented at International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Rio de Janeiro, Brazil, 27 Sept - 2 Oct 2009. Submitted to J.Phys.G: Nucl.Part.Phys, one reference adde

    Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503

    Get PDF
    Measuring the relative mass contributions of luminous and dark matter in spiral galaxies is important for understanding their formation and evolution. The combination of a galaxy rotation curve and strong lensing is a powerful way to break the disk-halo degeneracy that is inherent in each of the methods individually. We present an analysis of the 10-image radio spiral lens B1933+503 at z_l=0.755, incorporating (1) new global VLBI observations, (2) new adaptive-optics assisted K-band imaging, (3) new spectroscopic observations for the lens galaxy rotation curve and the source redshift. We construct a three-dimensionally axisymmetric mass distribution with 3 components: an exponential profile for the disk, a point mass for the bulge, and an NFW profile for the halo. The mass model is simultaneously fitted to the kinematics and the lensing data. The NFW halo needs to be oblate with a flattening of a/c=0.33^{+0.07}_{-0.05} to be consistent with the radio data. This suggests that baryons are effective at making the halos oblate near the center. The lensing and kinematics analysis probe the inner ~10 kpc of the galaxy, and we obtain a lower limit on the halo scale radius of 16 kpc (95% CI). The dark matter mass fraction inside a sphere with a radius of 2.2 disk scale lengths is f_{DM,2.2}=0.43^{+0.10}_{-0.09}. The contribution of the disk to the total circular velocity at 2.2 disk scale lengths is 0.76^{+0.05}_{-0.06}, suggesting that the disk is marginally submaximal. The stellar mass of the disk from our modeling is log_{10}(M_{*}/M_{sun}) = 11.06^{+0.09}_{-0.11} assuming that the cold gas contributes ~20% to the total disk mass. In comparison to the stellar masses estimated from stellar population synthesis models, the stellar initial mass function of Chabrier is preferred to that of Salpeter by a probability factor of 7.2.Comment: 16 pages, 13 figures, minor revisions based on referee's comments, accepted for publication in Ap
    corecore